These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
251 related items for PubMed ID: 8397961
61. The effect of the number of sample units tested on the precision of microbial colony counts. Jarvis B, Hedges AJ. Food Microbiol; 2011 Sep; 28(6):1211-9. PubMed ID: 21645822 [Abstract] [Full Text] [Related]
62. A fully automated microscope bacterial enumeration system for studies of oral microbial ecology. Singleton S, Cahill JG, Watson GK, Allison C, Cummins D, Thurnheer T, Guggenheim B, Gmür R. J Immunoassay Immunochem; 2001 Sep; 22(3):253-74. PubMed ID: 11506276 [Abstract] [Full Text] [Related]
63. Rapid enumeration of microorganisms in foods by the direct epifluorescent filter technique. Pettipher GL, Rodrigues UM. Appl Environ Microbiol; 1982 Oct; 44(4):809-13. PubMed ID: 7149713 [Abstract] [Full Text] [Related]
64. Report on analytical mycology of foods and drugs. Schulze AE. J Assoc Off Anal Chem; 1974 Mar; 57(2):310. PubMed ID: 4856209 [No Abstract] [Full Text] [Related]
65. Method Verification Requirements for an Advanced Imaging System for Microbial Plate Count Enumeration. Jones D, Cundell T. PDA J Pharm Sci Technol; 2018 Mar; 72(2):199-212. PubMed ID: 29242391 [Abstract] [Full Text] [Related]
66. A comparison of ready-to-use systems for evaluating the microbiological quality of acidic fruit juices using non-pasteurized orange juice as an experimental model. Ramazotti-Ferrati A, Tavolaro P, Destro MT, Landgraf M, Franco BD. Int Microbiol; 2005 Mar; 8(1):48-53. PubMed ID: 15906261 [Abstract] [Full Text] [Related]
67. [Bacteriological and mycological study of feed]. Pózvári M. Dtsch Tierarztl Wochenschr; 1985 Jun 07; 92(6):207-12. PubMed ID: 3896729 [No Abstract] [Full Text] [Related]
68. Real-time nucleic acid-based detection methods for pathogenic bacteria in food. McKillip JL, Drake M. J Food Prot; 2004 Apr 07; 67(4):823-32. PubMed ID: 15083739 [Abstract] [Full Text] [Related]
69. The direct epifluorescent filter technique (DEFT). Kroll R. Methods Mol Biol; 1995 Apr 07; 46():113-21. PubMed ID: 7550701 [No Abstract] [Full Text] [Related]
70. Estimates of measurement uncertainty from proficiency testing schemes, internal laboratory quality monitoring and during routine enforcement examination of foods. Jarvis B, Corry JE, Hedges AJ. J Appl Microbiol; 2007 Aug 07; 103(2):462-7. PubMed ID: 17650207 [Abstract] [Full Text] [Related]
71. Development of a nondestructive fluorescence-based enzymatic staining of microcolonies for enumerating bacterial contamination in filterable products. Baumstummler A, Chollet R, Meder H, Olivieri F, Rouillon S, Waiche G, Ribault S. J Appl Microbiol; 2011 Jan 07; 110(1):69-79. PubMed ID: 20880209 [Abstract] [Full Text] [Related]
72. Reagentless detection of microorganisms by intrinsic fluorescence. Estes C, Duncan A, Wade B, Lloyd C, Ellis W, Powers L. Biosens Bioelectron; 2003 May 07; 18(5-6):511-9. PubMed ID: 12706557 [Abstract] [Full Text] [Related]
74. Food Microbiology 2020. Laranjo M, Córdoba MG, Semedo-Lemsaddek T, Potes ME. Biomed Res Int; 2021 May 07; 2021():9785432. PubMed ID: 35155667 [No Abstract] [Full Text] [Related]
75. Total viable bacterial count using a real time all-fibre spectroscopic system. Bogomolny E, Swift S, Vanholsbeeck F. Analyst; 2013 Jul 21; 138(14):4112-9. PubMed ID: 23730684 [Abstract] [Full Text] [Related]
80. Rapid separation and counting of viable microbial cells in food by nonculture method with bioplorer, a focusing-free microscopic apparatus with a novel cell separation unit. Shimakita T, Tashiro Y, Katsuya A, Saito M, Matsuoka H. J Food Prot; 2006 Jan 21; 69(1):170-6. PubMed ID: 16416915 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]