These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
121 related items for PubMed ID: 8401470
21. The dynamics of interactions between Plasmodium and the mosquito: a study of the infectivity of Plasmodium berghei and Plasmodium gallinaceum, and their transmission by Anopheles stephensi, Anopheles gambiae and Aedes aegypti. Alavi Y, Arai M, Mendoza J, Tufet-Bayona M, Sinha R, Fowler K, Billker O, Franke-Fayard B, Janse CJ, Waters A, Sinden RE. Int J Parasitol; 2003 Aug; 33(9):933-43. PubMed ID: 12906877 [Abstract] [Full Text] [Related]
23. Plasmodium vivax: ookinete destruction and oocyst development arrest are responsible for Anopheles albimanus resistance to circumsporozoite phenotype VK247 parasites. Gonzalez-Ceron L, Rodriguez MH, Santillan F, Chavez B, Nettel JA, Hernandez-Avila JE, Kain KC. Exp Parasitol; 2001 Jul; 98(3):152-61. PubMed ID: 11527438 [Abstract] [Full Text] [Related]
24. Comparative susceptibility of three species of Anopheles from Belize, Central America, to Plasmodium falciparum (NF-54). Grieco JP, Achee NL, Roberts DR, Andre RG. J Am Mosq Control Assoc; 2005 Sep; 21(3):279-90. PubMed ID: 16252518 [Abstract] [Full Text] [Related]
25. Characterization of the modes of action of anti-Pbs21 malaria transmission-blocking immunity: ookinete to oocyst differentiation in vivo. Ranawaka GR, Fleck SL, Blanco AR, Sinden RE. Parasitology; 1994 Nov; 109 ( Pt 4)():403-11. PubMed ID: 7800408 [Abstract] [Full Text] [Related]
26. Semi-high-throughput detection of Plasmodium falciparum and Plasmodium vivax oocysts in mosquitoes using bead-beating followed by circumsporozoite ELISA and quantitative PCR. Graumans W, Tadesse FG, Andolina C, van Gemert GJ, Teelen K, Lanke K, Gadisa E, Yewhalaw D, van de Vegte-Bolmer M, Siebelink-Stoter R, Reuling I, Sauerwein R, Bousema T. Malar J; 2017 Sep 06; 16(1):356. PubMed ID: 28877707 [Abstract] [Full Text] [Related]
32. Rodent Plasmodium: population dynamics of early sporogony within Anopheles stephensi mosquitoes. Poudel SS, Newman RA, Vaughan JA. J Parasitol; 2008 Oct 01; 94(5):999-1008. PubMed ID: 18576764 [Abstract] [Full Text] [Related]
33. Lectin-carbohydrate recognition mechanism of Plasmodium berghei in the midgut of malaria vector Anopheles stephensi using quantum dot as a new approach. Basseri HR, Javazm MS, Farivar L, Abai MR. Acta Trop; 2016 Apr 01; 156():37-42. PubMed ID: 26772447 [Abstract] [Full Text] [Related]
35. Immuno-electron microscopic observation of Plasmodium berghei CTRP localization in the midgut of the vector mosquito Anopheles stephensi. Limviroj W, Yano K, Yuda M, Ando K, Chinzei Y. J Parasitol; 2002 Aug 01; 88(4):664-72. PubMed ID: 12197111 [Abstract] [Full Text] [Related]
36. A scanning electron microscopic study of the sporogonic development of Plasmodium falciparum in Anopheles stephensi. Meis JF, Wismans PG, Jap PH, Lensen AH, Ponnudurai T. Acta Trop; 1992 Feb 01; 50(3):227-36. PubMed ID: 1348599 [Abstract] [Full Text] [Related]
37. Fluorescent tagging of Plasmodium circumsporozoite protein allows imaging of sporozoite formation but blocks egress from oocysts. Singer M, Frischknecht F. Cell Microbiol; 2021 May 01; 23(5):e13321. PubMed ID: 33600048 [Abstract] [Full Text] [Related]