These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
324 related items for PubMed ID: 8401953
21. Pilocarpine-induced relaxation of rat tail artery by a non-cholinergic mechanism and in the absence of an intact endothelium. Tonta MA, Parkington HC, Tare M, Coleman HA. Br J Pharmacol; 1994 Jun; 112(2):525-32. PubMed ID: 8075872 [Abstract] [Full Text] [Related]
22. Characterization and modulation of EDHF-mediated relaxations in the rat isolated superior mesenteric arterial bed. McCulloch AI, Bottrill FE, Randall MD, Hiley CR. Br J Pharmacol; 1997 Apr; 120(8):1431-8. PubMed ID: 9113362 [Abstract] [Full Text] [Related]
23. Biphasic responses of equine colonic vessel rings to vasoactive inflammatory mediators. Venugopalan CS, Moore RM, Holmes EP, Sedrish SA, Koch CE. J Auton Pharmacol; 1998 Aug; 18(4):231-7. PubMed ID: 9788293 [Abstract] [Full Text] [Related]
24. Acetylcholine stimulates release of endothelium-derived relaxing factor in coronary arteries of human organ donors. Blaise GA, Stewart DJ, Guérard MJ. Can J Cardiol; 1993 Nov; 9(9):813-20. PubMed ID: 8281481 [Abstract] [Full Text] [Related]
25. Glycyrrhetinic acid-sensitive mechanism does not make a major contribution to non-prostanoid, non-nitric oxide mediated endothelium-dependent relaxation of rat mesenteric artery in response to acetylcholine. Tanaka Y, Otsuka A, Tanaka H, Shigenobu K. Res Commun Mol Pathol Pharmacol; 1999 Mar; 103(3):227-39. PubMed ID: 10509734 [Abstract] [Full Text] [Related]
26. Reactivity of the dog cavernous carotid artery. The role of the arterial and venous endothelium. García-Villalón AL, Fernández N, García JL, Monge L, Gómez B, Diéguez G. Pflugers Arch; 1993 Nov; 425(3-4):256-62. PubMed ID: 8309786 [Abstract] [Full Text] [Related]
27. Involvement of nitric oxide in the endothelium-dependent relaxation induced by hydrogen peroxide in the rabbit aorta. Zembowicz A, Hatchett RJ, Jakubowski AM, Gryglewski RJ. Br J Pharmacol; 1993 Sep; 110(1):151-8. PubMed ID: 7693274 [Abstract] [Full Text] [Related]
28. Loss of endothelium-dependent relaxation in proximal pulmonary arteries from rats exposed to chronic hypoxia: effects of in vivo and in vitro supplementation with L-arginine. Carville C, Raffestin B, Eddahibi S, Blouquit Y, Adnot S. J Cardiovasc Pharmacol; 1993 Dec; 22(6):889-96. PubMed ID: 7509910 [Abstract] [Full Text] [Related]
29. Involvement of nitric oxide in the non-adrenergic non-cholinergic neurotransmission of horse deep penile arteries: role of charybdotoxin-sensitive K(+)-channels. Simonsen U, Prieto D, Sánez de Tejada I, García-Sacristán A. Br J Pharmacol; 1995 Nov; 116(6):2582-90. PubMed ID: 8590974 [Abstract] [Full Text] [Related]
30. Endothelium-dependent and -independent effects of exogenous ATP, adenosine, GTP and guanosine on vascular tone and cyclic nucleotide accumulation of rat mesenteric artery. Vuorinen P, Pörsti I, Metsä-Ketelä T, Manninen V, Vapaatalo H, Laustiola KE. Br J Pharmacol; 1992 Feb; 105(2):279-84. PubMed ID: 1313722 [Abstract] [Full Text] [Related]
31. Vasorelaxant and antiproliferative effects of berberine. Ko WH, Yao XQ, Lau CW, Law WI, Chen ZY, Kwok W, Ho K, Huang Y. Eur J Pharmacol; 2000 Jul 07; 399(2-3):187-96. PubMed ID: 10884519 [Abstract] [Full Text] [Related]
32. NG-nitro-L-arginine-resistant endothelium-dependent relaxation induced by acetylcholine in the rabbit renal artery. Kitagawa S, Yamaguchi Y, Kunitomo M, Sameshima E, Fujiwara M. Life Sci; 1994 Jul 07; 55(7):491-8. PubMed ID: 8041228 [Abstract] [Full Text] [Related]
33. Endothelium-dependent relaxations mediated by inducible B1 and constitutive B2 kinin receptors in the bovine isolated coronary artery. Drummond GR, Cocks TM. Br J Pharmacol; 1995 Nov 07; 116(5):2473-81. PubMed ID: 8581287 [Abstract] [Full Text] [Related]
34. Modulation of vascular reactivity in normal, hypertensive and diabetic rat aortae by a non-antioxidant flavonoid. Ajay M, Achike FI, Mustafa MR. Pharmacol Res; 2007 May 07; 55(5):385-91. PubMed ID: 17317209 [Abstract] [Full Text] [Related]
35. Heterogeneity of muscarinic receptors in lamb isolated coronary resistance arteries. Simonsen U, Prieto D, Rivera L, Hernández M, Mulvany MJ, García-Sacristán A. Br J Pharmacol; 1993 Aug 07; 109(4):998-1007. PubMed ID: 8401954 [Abstract] [Full Text] [Related]
37. Evidence for differential roles of nitric oxide (NO) and hyperpolarization in endothelium-dependent relaxation of pig isolated coronary artery. Kilpatrick EV, Cocks TM. Br J Pharmacol; 1994 Jun 07; 112(2):557-65. PubMed ID: 7521260 [Abstract] [Full Text] [Related]
38. Nitroarginine-sensitive and -insensitive components of the endothelium-dependent relaxation in the guinea-pig carotid artery. Suzuki H, Chen G, Yamamoto Y, Miwa K. Jpn J Physiol; 1992 Jun 07; 42(2):335-47. PubMed ID: 1434097 [Abstract] [Full Text] [Related]
39. A xanthine-based KMUP-1 with cyclic GMP enhancing and K(+) channels opening activities in rat aortic smooth muscle. Wu BN, Lin RJ, Lin CY, Shen KP, Chiang LC, Chen IJ. Br J Pharmacol; 2001 Sep 07; 134(2):265-74. PubMed ID: 11564644 [Abstract] [Full Text] [Related]
40. Role of intracellular Ca2+ in EDRF release in rat aorta. Zheng XF, Kwan CY, Daniel EE. J Vasc Res; 1994 Sep 07; 31(1):18-24. PubMed ID: 8274622 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]