These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


330 related items for PubMed ID: 8402680

  • 21. The effect of functional groups on reduction and activation of quinone bioreductive agents by DT-diaphorase.
    Fourie J, Oleschuk CJ, Guziec F, Guziec L, Fiterman DJ, Monterrosa C, Begleiter A.
    Cancer Chemother Pharmacol; 2002 Feb; 49(2):101-10. PubMed ID: 11862423
    [Abstract] [Full Text] [Related]

  • 22. Circular dichroism spectra of NADH-cytochrome b5 reductase purified from rabbit erythrocytes.
    Yubisui T, Takeshita M.
    Biochem Int; 1984 Feb; 8(2):319-27. PubMed ID: 6477604
    [Abstract] [Full Text] [Related]

  • 23. Preferential activation of mitomycin C to cytotoxic metabolites by hypoxic tumor cells.
    Kennedy KA, Rockwell S, Sartorelli AC.
    Cancer Res; 1980 Jul; 40(7):2356-60. PubMed ID: 7388797
    [Abstract] [Full Text] [Related]

  • 24. NADH cytochrome b5 reductase and cytochrome b5 catalyze the microsomal reduction of xenobiotic hydroxylamines and amidoximes in humans.
    Kurian JR, Bajad SU, Miller JL, Chin NA, Trepanier LA.
    J Pharmacol Exp Ther; 2004 Dec; 311(3):1171-8. PubMed ID: 15302896
    [Abstract] [Full Text] [Related]

  • 25. Generation of reactive oxygen radicals through bioactivation of mitomycin antibiotics.
    Pritsos CA, Sartorelli AC.
    Cancer Res; 1986 Jul; 46(7):3528-32. PubMed ID: 3011250
    [Abstract] [Full Text] [Related]

  • 26. Bioreduction of idarubicin and formation of ROS responsible for DNA cleavage by NADPH-cytochrome P450 reductase and its potential role in the antitumor effect.
    Celik H, Arinç E.
    J Pharm Pharm Sci; 2008 Jul; 11(4):68-82. PubMed ID: 19183515
    [Abstract] [Full Text] [Related]

  • 27. Reduction of sulfamethoxazole and dapsone hydroxylamines by a microsomal enzyme system purified from pig liver and pig and human liver microsomes.
    Clement B, Behrens D, Amschler J, Matschke K, Wolf S, Havemeyer A.
    Life Sci; 2005 May 27; 77(2):205-19. PubMed ID: 15862605
    [Abstract] [Full Text] [Related]

  • 28. Vanadate-dependent NAD(P)H oxidation by microsomal enzymes.
    Reif DW, Coulombe RA, Aust SD.
    Arch Biochem Biophys; 1989 Apr 27; 270(1):137-43. PubMed ID: 2494940
    [Abstract] [Full Text] [Related]

  • 29. Expression and characterization of a functional canine variant of cytochrome b5 reductase.
    Roma GW, Crowley LJ, Barber MJ.
    Arch Biochem Biophys; 2006 Aug 01; 452(1):69-82. PubMed ID: 16814740
    [Abstract] [Full Text] [Related]

  • 30. Evidence for enzymatic activation and oxygen involvement in cytotoxicity and antitumor activity of N,N',N''-triethylenethiophosphoramide.
    Teicher BA, Waxman DJ, Holden SA, Wang YY, Clarke L, Alvarez Sotomayor E, Jones SM, Frei E.
    Cancer Res; 1989 Sep 15; 49(18):4996-5001. PubMed ID: 2504483
    [Abstract] [Full Text] [Related]

  • 31. Metabolic activation of mitomycin C by NADPH-ferredoxin reductase in vitro.
    Jiang HB, Ichikawa M, Furukawa A, Tomita S, Ohnishi T, Ichikawa Y.
    Life Sci; 2001 Feb 23; 68(14):1677-85. PubMed ID: 11263680
    [Abstract] [Full Text] [Related]

  • 32. The involvement of NADH-cytochrome b5 reductase and cytochrome b5 complex in microsomal NADH-cytochrome c reductase activity. Resolution of the complex by triton X-100.
    Starón K, Kaniuga Z.
    Acta Biochim Pol; 1974 Feb 23; 21(1):55-60. PubMed ID: 4364830
    [No Abstract] [Full Text] [Related]

  • 33. High-level expression in Escherichia coli of the soluble, catalytic domain of rat hepatic cytochrome b5 reductase.
    Barber MJ, Quinn GB.
    Protein Expr Purif; 1996 Aug 23; 8(1):41-7. PubMed ID: 8812833
    [Abstract] [Full Text] [Related]

  • 34. Kinetics and mechanism of mitomycin C bioactivation by xanthine dehydrogenase under aerobic and hypoxic conditions.
    Gustafson DL, Pritsos CA.
    Cancer Res; 1993 Nov 15; 53(22):5470-4. PubMed ID: 8221687
    [Abstract] [Full Text] [Related]

  • 35. Reductase enzyme expression across the National Cancer Institute Tumor cell line panel: correlation with sensitivity to mitomycin C and EO9.
    Fitzsimmons SA, Workman P, Grever M, Paull K, Camalier R, Lewis AD.
    J Natl Cancer Inst; 1996 Mar 06; 88(5):259-69. PubMed ID: 8614004
    [Abstract] [Full Text] [Related]

  • 36. Identification of cytochrome-b5 reductase as the enzyme responsible for NADH-dependent lucigenin chemiluminescence in human spermatozoa.
    Baker MA, Krutskikh A, Curry BJ, Hetherington L, Aitken RJ.
    Biol Reprod; 2005 Aug 06; 73(2):334-42. PubMed ID: 15858218
    [Abstract] [Full Text] [Related]

  • 37. Metabolism of bioreductive antitumor compounds by purified rat and human DT-diaphorases.
    Beall HD, Mulcahy RT, Siegel D, Traver RD, Gibson NW, Ross D.
    Cancer Res; 1994 Jun 15; 54(12):3196-201. PubMed ID: 8205540
    [Abstract] [Full Text] [Related]

  • 38. Kinetic properties of purified sheep lung microsomal NADH-cytochrome b5 reductase.
    Güray T, Arinç E.
    Int J Biochem; 1991 Jun 15; 23(11):1315-20. PubMed ID: 1794453
    [Abstract] [Full Text] [Related]

  • 39. Purification and properties of soluble NADH-cytochrome b5 reductase of rabbit erythrocytes.
    Yubisui T, Takeshita M.
    J Biochem; 1982 May 15; 91(5):1467-77. PubMed ID: 7096301
    [Abstract] [Full Text] [Related]

  • 40. Regulative mechanisms in NADH- and NADPH-supported N-oxidation of 4-chloroaniline catalyzed by cytochrome b5-enriched rabbit liver microsomal fractions.
    Golly I, Hlavica P.
    Biochim Biophys Acta; 1987 Jun 17; 913(2):219-27. PubMed ID: 3109485
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 17.