These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. [Oxaloacetate-dependent calcium transport in rat liver mitochondria]. Zharova TV, Tiulina OV. Biokhimiia; 1993 Aug; 58(8):1188-98. PubMed ID: 8399766 [Abstract] [Full Text] [Related]
3. On the inter-relationship between glucagon action, the oxidation-reduction state of pyridine nucleotides, and calcium retention by rat liver mitochondria. Prpić V, Bygrave FL. J Biol Chem; 1980 Jul 10; 255(13):6193-9. PubMed ID: 7391016 [No Abstract] [Full Text] [Related]
4. A spontaneous mutation in the nicotinamide nucleotide transhydrogenase gene of C57BL/6J mice results in mitochondrial redox abnormalities. Ronchi JA, Figueira TR, Ravagnani FG, Oliveira HC, Vercesi AE, Castilho RF. Free Radic Biol Med; 2013 Oct 10; 63():446-56. PubMed ID: 23747984 [Abstract] [Full Text] [Related]
5. Quantitative and mechanistic aspects of the hydroperoxide-induced release of Ca2+ from rat liver mitochondria. Frei B, Winterhalter KH, Richter C. Eur J Biochem; 1985 Jun 18; 149(3):633-9. PubMed ID: 2988954 [Abstract] [Full Text] [Related]
7. Hydroperoxide-induced loss of pyridine nucleotides and release of calcium from rat liver mitochondria. Lötscher HR, Winterhalter KH, Carafoli E, Richter C. J Biol Chem; 1980 Oct 10; 255(19):9325-30. PubMed ID: 6773965 [Abstract] [Full Text] [Related]
9. The participation of NADP, the transmembrane potential and the energy-linked NAD(P) transhydrogenase in the process of Ca2+ efflux from rat liver mitochondria. Vercesi AE. Arch Biochem Biophys; 1987 Jan 10; 252(1):171-8. PubMed ID: 3813533 [Abstract] [Full Text] [Related]
10. The Ca2+-binding glycoprotein as the site of metabolic regulation of mitochondrial Ca2+ movements. Panfili E, Sottocasa GL, Sandri G, Liut G. Eur J Biochem; 1980 Mar 10; 105(1):205-10. PubMed ID: 7371640 [Abstract] [Full Text] [Related]
11. Pyridine-nucleotide oxidation, Ca2+ cycling and membrane damage during tert-butyl hydroperoxide metabolism by rat-liver mitochondria. Bellomo G, Martino A, Richelmi P, Moore GA, Jewell SA, Orrenius S. Eur J Biochem; 1984 Apr 02; 140(1):1-6. PubMed ID: 6705788 [Abstract] [Full Text] [Related]
12. Relationships between the NAD(P) redox state, fatty acid oxidation, and inner membrane permeability in rat liver mitochondria. Lê-Quôc D, Lê-Quôc K. Arch Biochem Biophys; 1989 Sep 02; 273(2):466-78. PubMed ID: 2774563 [Abstract] [Full Text] [Related]
13. Possible participation of membrane thiol groups on the mechanism of NAD(P)+-stimulated Ca2+ efflux from mitochondria. Vercesi AE. Biochem Biophys Res Commun; 1984 Feb 29; 119(1):305-10. PubMed ID: 6704122 [Abstract] [Full Text] [Related]
14. Dissociation between mitochondria calcium ion release and pyridine nucleotide oxidation. Wolkowicz PE, McMillin-Wood J. J Biol Chem; 1980 Nov 10; 255(21):10348-53. PubMed ID: 7430127 [Abstract] [Full Text] [Related]