These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


297 related items for PubMed ID: 8408094

  • 1. A non-Newtonian fluid model for blood flow through arteries under stenotic conditions.
    Misra JC, Patra MK, Misra SC.
    J Biomech; 1993 Sep; 26(9):1129-41. PubMed ID: 8408094
    [Abstract] [Full Text] [Related]

  • 2. Flow in arteries in the presence of stenosis.
    Misra JC, Chakravarty S.
    J Biomech; 1986 Sep; 19(11):907-18. PubMed ID: 3793739
    [Abstract] [Full Text] [Related]

  • 3. A model for blood flow through a stenotic tube.
    Tandon PN, Rana UV, Kawahara M, Katiyar VK.
    Int J Biomed Comput; 1993 Jan; 32(1):61-78. PubMed ID: 8425753
    [Abstract] [Full Text] [Related]

  • 4. Two-layered model of Casson fluid flow through stenotic blood vessels: applications to the cardiovascular system.
    Srivastava VP, Saxena M.
    J Biomech; 1994 Jul; 27(7):921-8. PubMed ID: 8063842
    [Abstract] [Full Text] [Related]

  • 5. Microcontinuum model for pulsatile blood flow through a stenosed tube.
    Chaturani P, Palanisamy V.
    Biorheology; 1989 Jul; 26(4):835-46. PubMed ID: 2611375
    [Abstract] [Full Text] [Related]

  • 6. Modelling of flow and wall behaviour in a mildly stenosed tube.
    Lee KW, Xu XY.
    Med Eng Phys; 2002 Nov; 24(9):575-86. PubMed ID: 12376044
    [Abstract] [Full Text] [Related]

  • 7. Effect of initial stresses on the wave propagation in arteries.
    Misra JC, Choudhury KR.
    J Math Biol; 1983 Nov; 18(1):53-67. PubMed ID: 6631263
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Mathematical analysis of non-Newtonian blood flow in stenosis narrow arteries.
    Sriyab S.
    Comput Math Methods Med; 2014 Nov; 2014():479152. PubMed ID: 25587350
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Nonlinear model on pulsatile flow of blood through a porous bifurcated arterial stenosis in the presence of magnetic field and periodic body acceleration.
    Ponalagusamy R, Priyadharshini S.
    Comput Methods Programs Biomed; 2017 Apr; 142():31-41. PubMed ID: 28325445
    [Abstract] [Full Text] [Related]

  • 14. Computer simulation of non-newtonian effects on blood flow in large arteries.
    Leuprecht A, Perktold K.
    Comput Methods Biomech Biomed Engin; 2001 Feb; 4(2):149-63. PubMed ID: 11264865
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Developing blood flow in the entrance region of an artery.
    Tandon PN, Srivastava LM, Kushwaha K.
    Int J Biomed Comput; 1994 Aug; 36(4):257-65. PubMed ID: 8002103
    [Abstract] [Full Text] [Related]

  • 19. Comparison of physiological and simple pulsatile flows through stenosed arteries.
    Zendehbudi GR, Moayeri MS.
    J Biomech; 1999 Sep; 32(9):959-65. PubMed ID: 10460133
    [Abstract] [Full Text] [Related]

  • 20. Numerical simulation of flow oscillations in stenotic arterial segment.
    Tura A, Cavalcanti S.
    Comput Biol Med; 2001 Mar; 31(2):113-31. PubMed ID: 11165219
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.