These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


100 related items for PubMed ID: 8411164

  • 21. Mechanism of the electron transfer catalyst DsbB from Escherichia coli.
    Grauschopf U, Fritz A, Glockshuber R.
    EMBO J; 2003 Jul 15; 22(14):3503-13. PubMed ID: 12853466
    [Abstract] [Full Text] [Related]

  • 22. Folding of horse cytochrome c in the reduced state.
    Bhuyan AK, Udgaonkar JB.
    J Mol Biol; 2001 Oct 05; 312(5):1135-60. PubMed ID: 11580255
    [Abstract] [Full Text] [Related]

  • 23. Random circular permutation of DsbA reveals segments that are essential for protein folding and stability.
    Hennecke J, Sebbel P, Glockshuber R.
    J Mol Biol; 1999 Mar 05; 286(4):1197-215. PubMed ID: 10047491
    [Abstract] [Full Text] [Related]

  • 24. In vivo control of redox potential during protein folding catalyzed by bacterial protein disulfide-isomerase (DsbA).
    Wunderlich M, Glockshuber R.
    J Biol Chem; 1993 Nov 25; 268(33):24547-50. PubMed ID: 7693702
    [Abstract] [Full Text] [Related]

  • 25. Structure of circularly permuted DsbA(Q100T99): preserved global fold and local structural adjustments.
    Manjasetty BA, Hennecke J, Glockshuber R, Heinemann U.
    Acta Crystallogr D Biol Crystallogr; 2004 Feb 25; 60(Pt 2):304-9. PubMed ID: 14747707
    [Abstract] [Full Text] [Related]

  • 26. The zinc center influences the redox and thermodynamic properties of Escherichia coli thioredoxin 2.
    El Hajjaji H, Dumoulin M, Matagne A, Colau D, Roos G, Messens J, Collet JF.
    J Mol Biol; 2009 Feb 13; 386(1):60-71. PubMed ID: 19073194
    [Abstract] [Full Text] [Related]

  • 27. Paradoxical redox properties of DsbB and DsbA in the protein disulfide-introducing reaction cascade.
    Inaba K, Ito K.
    EMBO J; 2002 Jun 03; 21(11):2646-54. PubMed ID: 12032077
    [Abstract] [Full Text] [Related]

  • 28. Crystallization of DsbA, an Escherichia coli protein required for disulphide bond formation in vivo.
    Martin JL, Waksman G, Bardwell JC, Beckwith J, Kuriyan J.
    J Mol Biol; 1993 Apr 05; 230(3):1097-100. PubMed ID: 8478925
    [Abstract] [Full Text] [Related]

  • 29. Structure, dynamics and electrostatics of the active site of glutaredoxin 3 from Escherichia coli: comparison with functionally related proteins.
    Foloppe N, Sagemark J, Nordstrand K, Berndt KD, Nilsson L.
    J Mol Biol; 2001 Jul 06; 310(2):449-70. PubMed ID: 11428900
    [Abstract] [Full Text] [Related]

  • 30. Crystal structures of reduced and oxidized DsbA: investigation of domain motion and thiolate stabilization.
    Guddat LW, Bardwell JC, Martin JL.
    Structure; 1998 Jun 15; 6(6):757-67. PubMed ID: 9655827
    [Abstract] [Full Text] [Related]

  • 31. Replacement of the active-site cysteine residues of DsbA, a protein required for disulfide bond formation in vivo.
    Zapun A, Cooper L, Creighton TE.
    Biochemistry; 1994 Feb 22; 33(7):1907-14. PubMed ID: 8110795
    [Abstract] [Full Text] [Related]

  • 32. Elimination of all charged residues in the vicinity of the active-site helix of the disulfide oxidoreductase DsbA. Influence of electrostatic interactions on stability and redox properties.
    Jacobi A, Huber-Wunderlich M, Hennecke J, Glockshuber R.
    J Biol Chem; 1997 Aug 29; 272(35):21692-9. PubMed ID: 9268296
    [Abstract] [Full Text] [Related]

  • 33. On the role of the cis-proline residue in the active site of DsbA.
    Charbonnier JB, Belin P, Moutiez M, Stura EA, Quéméneur E.
    Protein Sci; 1999 Jan 29; 8(1):96-105. PubMed ID: 10210188
    [Abstract] [Full Text] [Related]

  • 34. Crystal structure of the DsbA protein required for disulphide bond formation in vivo.
    Martin JL, Bardwell JC, Kuriyan J.
    Nature; 1993 Sep 30; 365(6445):464-8. PubMed ID: 8413591
    [Abstract] [Full Text] [Related]

  • 35. Human carbonic anhydrase IV: in vitro activation and purification of disulfide-bonded enzyme following expression in Escherichia coli.
    Waheed A, Pham T, Won M, Okuyama T, Sly WS.
    Protein Expr Purif; 1997 Mar 30; 9(2):279-87. PubMed ID: 9056493
    [Abstract] [Full Text] [Related]

  • 36. Effect of redox state on the folding free energy of a thermostable electron-transfer metalloprotein: the CuA domain of cytochrome oxidase from Thermus thermophilus.
    Wittung-Stafshede P, Malmstrom BG, Sanders D, Fee JA, Winkler JR, Gray HB.
    Biochemistry; 1998 Mar 03; 37(9):3172-7. PubMed ID: 9485471
    [Abstract] [Full Text] [Related]

  • 37. Folding of Escherichia coli DsbC: characterization of a monomeric folding intermediate.
    Ke H, Zhang S, Li J, Howlett GJ, Wang CC.
    Biochemistry; 2006 Dec 19; 45(50):15100-10. PubMed ID: 17154548
    [Abstract] [Full Text] [Related]

  • 38. Glutathione-dependent pathways of refolding of RNase T1 by oxidation and disulfide isomerization: catalysis by protein disulfide isomerase.
    Ruoppolo M, Freedman RB, Pucci P, Marino G.
    Biochemistry; 1996 Oct 22; 35(42):13636-46. PubMed ID: 8885843
    [Abstract] [Full Text] [Related]

  • 39. Respiratory chain strongly oxidizes the CXXC motif of DsbB in the Escherichia coli disulfide bond formation pathway.
    Kobayashi T, Ito K.
    EMBO J; 1999 Mar 01; 18(5):1192-8. PubMed ID: 10064586
    [Abstract] [Full Text] [Related]

  • 40. Catalysis of the oxidative folding of bovine pancreatic ribonuclease A by protein disulfide isomerase.
    Shin HC, Scheraga HA.
    J Mol Biol; 2000 Jul 21; 300(4):995-1003. PubMed ID: 10891284
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 5.