These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


108 related items for PubMed ID: 8416842

  • 1. Cranial neural crest cells synthesize and secrete a latent form of transforming growth factor beta that can be activated by neural crest cell proteolysis.
    Brauer PR, Yee JA.
    Dev Biol; 1993 Jan; 155(1):281-5. PubMed ID: 8416842
    [Abstract] [Full Text] [Related]

  • 2. Plasminogen-dependent activation of latent transforming growth factor beta (TGF beta) by growing cultures of osteoblast-like cells.
    Yee JA, Yan L, Dominguez JC, Allan EH, Martin TJ.
    J Cell Physiol; 1993 Dec; 157(3):528-34. PubMed ID: 8253864
    [Abstract] [Full Text] [Related]

  • 3. Urokinase-type plasminogen activator regulates cranial neural crest cell migration in vitro.
    Agrawal M, Brauer PR.
    Dev Dyn; 1996 Nov; 207(3):281-90. PubMed ID: 8922527
    [Abstract] [Full Text] [Related]

  • 4. Requirement for receptor-bound urokinase in plasmin-dependent cellular conversion of latent TGF-beta to TGF-beta.
    Odekon LE, Blasi F, Rifkin DB.
    J Cell Physiol; 1994 Mar; 158(3):398-407. PubMed ID: 8126064
    [Abstract] [Full Text] [Related]

  • 5. Characterization of latent TGF-beta activation by murine peritoneal macrophages.
    Nunes I, Shapiro RL, Rifkin DB.
    J Immunol; 1995 Aug 01; 155(3):1450-9. PubMed ID: 7636210
    [Abstract] [Full Text] [Related]

  • 6. Defective processing of the transforming growth factor-beta1 in azoxymethane-induced mouse colon tumors.
    Guda K, Claffey KP, Dong M, Nambiar PR, Rosenberg DW.
    Mol Carcinog; 2003 May 01; 37(1):51-9. PubMed ID: 12720300
    [Abstract] [Full Text] [Related]

  • 7. Latent transforming growth factor-beta is present in the extracellular matrix of embryonic hearts in situ.
    Ghosh S, Brauer PR.
    Dev Dyn; 1996 Feb 01; 205(2):126-34. PubMed ID: 8834473
    [Abstract] [Full Text] [Related]

  • 8. Mitogenic and anti-proliferative signals for neural crest cells and the neurogenic action of TGF-beta1.
    Zhang JM, Hoffmann R, Sieber-Blum M.
    Dev Dyn; 1997 Mar 01; 208(3):375-86. PubMed ID: 9056641
    [Abstract] [Full Text] [Related]

  • 9. Presence of urokinase in serum-free primary rat hepatocyte cultures and its role in activating hepatocyte growth factor.
    Mars WM, Kim TH, Stolz DB, Liu ML, Michalopoulos GK.
    Cancer Res; 1996 Jun 15; 56(12):2837-43. PubMed ID: 8665523
    [Abstract] [Full Text] [Related]

  • 10. Immortalized Hensen's node cells secrete a factor that regulates avian neural crest cell fates in vitro.
    Darland T, Leblanc GG.
    Dev Biol; 1996 May 25; 176(1):62-75. PubMed ID: 8654895
    [Abstract] [Full Text] [Related]

  • 11. Proteolytic activation of latent TGF-beta precedes caspase-3 activation and enhances apoptotic death of lung epithelial cells.
    Solovyan VT, Keski-Oja J.
    J Cell Physiol; 2006 May 25; 207(2):445-53. PubMed ID: 16447253
    [Abstract] [Full Text] [Related]

  • 12. Particular types of tumor cells have the capacity to convert transforming growth factor beta from a latent to an active form.
    Takiuchi H, Tada T, Li XF, Ogata M, Ikeda T, Fujimoto S, Fujiwara H, Hamaoka T.
    Cancer Res; 1992 Oct 15; 52(20):5641-6. PubMed ID: 1327512
    [Abstract] [Full Text] [Related]

  • 13. The first stage of transforming growth factor beta1 activation is release of the large latent complex from the extracellular matrix of growth plate chondrocytes by matrix vesicle stromelysin-1 (MMP-3).
    Maeda S, Dean DD, Gomez R, Schwartz Z, Boyan BD.
    Calcif Tissue Int; 2002 Jan 15; 70(1):54-65. PubMed ID: 11907708
    [Abstract] [Full Text] [Related]

  • 14. Smooth muscle lineage diversity in the chick embryo. Two types of aortic smooth muscle cell differ in growth and receptor-mediated transcriptional responses to transforming growth factor-beta.
    Topouzis S, Majesky MW.
    Dev Biol; 1996 Sep 15; 178(2):430-45. PubMed ID: 8830742
    [Abstract] [Full Text] [Related]

  • 15. Intestinal transformation results in transforming growth factor-beta-dependent alteration in tumor cell-cell matrix interactions.
    Berger DH, O'Mahony CA, Sheng H, Shao J, Albo D, DuBois RN, Beauchamp RD.
    Surgery; 2003 May 15; 133(5):568-79. PubMed ID: 12773985
    [Abstract] [Full Text] [Related]

  • 16. Role of the transforming growth factor-beta family in the expression of cranial neural crest-specific phenotypes.
    Leblanc GG, Holbert TE, Darland T.
    J Neurobiol; 1995 Apr 15; 26(4):497-510. PubMed ID: 7602314
    [Abstract] [Full Text] [Related]

  • 17. Transforming growth factor-beta 1 differentially regulates proliferation, morphology, and extracellular matrix expression by three neural crest-derived neuroblastoma cell lines.
    Rogers SL, Cutts JL, Gegick PJ, McGuire PG, Rosenberger C, Krisinski S.
    Exp Cell Res; 1994 Apr 15; 211(2):252-62. PubMed ID: 8143771
    [Abstract] [Full Text] [Related]

  • 18. Osteoclast synthesis and secretion and activation of latent transforming growth factor beta.
    Oursler MJ.
    J Bone Miner Res; 1994 Apr 15; 9(4):443-52. PubMed ID: 8030431
    [Abstract] [Full Text] [Related]

  • 19. Cell-associated activation of latent transforming growth factor-beta by calpain.
    Abe M, Oda N, Sato Y.
    J Cell Physiol; 1998 Feb 15; 174(2):186-93. PubMed ID: 9428805
    [Abstract] [Full Text] [Related]

  • 20. Modulation of tissue plasminogen activator and plasminogen activator inhibitor-1 by transforming growth factor-beta in human retinal glial cells.
    Schacke W, Beck KF, Pfeilschifter J, Koch F, Hattenbach LO.
    Invest Ophthalmol Vis Sci; 2002 Aug 15; 43(8):2799-805. PubMed ID: 12147618
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.