These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


207 related items for PubMed ID: 8432351

  • 1. Excitotoxin lesions in primates as a model for Huntington's disease: histopathologic and neurochemical characterization.
    Ferrante RJ, Kowall NW, Cipolloni PB, Storey E, Beal MF.
    Exp Neurol; 1993 Jan; 119(1):46-71. PubMed ID: 8432351
    [Abstract] [Full Text] [Related]

  • 2. Differential sparing of somatostatin-neuropeptide Y and cholinergic neurons following striatal excitotoxin lesions.
    Beal MF, Kowall NW, Swartz KJ, Ferrante RJ, Martin JB.
    Synapse; 1989 Jan; 3(1):38-47. PubMed ID: 2563916
    [Abstract] [Full Text] [Related]

  • 3. Replication of the neurochemical characteristics of Huntington's disease by quinolinic acid.
    Beal MF, Kowall NW, Ellison DW, Mazurek MF, Swartz KJ, Martin JB.
    Nature; 1989 Jan; 321(6066):168-71. PubMed ID: 2422561
    [Abstract] [Full Text] [Related]

  • 4. Localization of immunoreactive GABA and enkephalin and NADPH-diaphorase-positive neurons in fetal striatal grafts in the quinolinic-acid-lesioned rat neostriatum.
    Roberts RC, Difiglia M.
    J Comp Neurol; 1988 Aug 15; 274(3):406-21. PubMed ID: 2975675
    [Abstract] [Full Text] [Related]

  • 5. Susceptibility of striatal neurons to excitotoxic injury correlates with basal levels of Bcl-2 and the induction of P53 and c-Myc immunoreactivity.
    Liang ZQ, Wang XX, Wang Y, Chuang DM, DiFiglia M, Chase TN, Qin ZH.
    Neurobiol Dis; 2005 Nov 15; 20(2):562-73. PubMed ID: 15922606
    [Abstract] [Full Text] [Related]

  • 6. Characterization of striatal cultures with the effect of QUIN and NMDA.
    Kumar U.
    Neurosci Res; 2004 May 15; 49(1):29-38. PubMed ID: 15099701
    [Abstract] [Full Text] [Related]

  • 7. Quinolinic acid-induced increases in calbindin D28k immunoreactivity in rat striatal neurons in vivo and in vitro mimic the pattern seen in Huntington's disease.
    Huang Q, Zhou D, Sapp E, Aizawa H, Ge P, Bird ED, Vonsattel JP, DiFiglia M.
    Neuroscience; 1995 Mar 15; 65(2):397-407. PubMed ID: 7777157
    [Abstract] [Full Text] [Related]

  • 8. Neurogenesis in the striatum of the quinolinic acid lesion model of Huntington's disease.
    Tattersfield AS, Croon RJ, Liu YW, Kells AP, Faull RL, Connor B.
    Neuroscience; 2004 Mar 15; 127(2):319-32. PubMed ID: 15262322
    [Abstract] [Full Text] [Related]

  • 9. The IGF-I amino-terminal tripeptide glycine-proline-glutamate (GPE) is neuroprotective to striatum in the quinolinic acid lesion animal model of Huntington's disease.
    Alexi T, Hughes PE, van Roon-Mom WM, Faull RL, Williams CE, Clark RG, Gluckman PD.
    Exp Neurol; 1999 Sep 15; 159(1):84-97. PubMed ID: 10486177
    [Abstract] [Full Text] [Related]

  • 10. Chronic quinolinic acid lesions in rats closely resemble Huntington's disease.
    Beal MF, Ferrante RJ, Swartz KJ, Kowall NW.
    J Neurosci; 1991 Jun 15; 11(6):1649-59. PubMed ID: 1710657
    [Abstract] [Full Text] [Related]

  • 11. The cortical lesion of Huntington's disease: further neurochemical characterization, and reproduction of some of the histological and neurochemical features by N-methyl-D-aspartate lesions of rat cortex.
    Storey E, Kowall NW, Finn SF, Mazurek MF, Beal MF.
    Ann Neurol; 1992 Oct 15; 32(4):526-34. PubMed ID: 1280937
    [Abstract] [Full Text] [Related]

  • 12. No evidence for preservation of somatostatin-containing neurons after intrastriatal injections of quinolinic acid.
    Davies SW, Roberts PJ.
    Nature; 1992 Oct 15; 327(6120):326-9. PubMed ID: 2884569
    [Abstract] [Full Text] [Related]

  • 13. Short- and long-term survival of large neurons in the excitotoxic lesioned rat caudate nucleus: a light and electron microscopic study.
    Roberts RC, DiFiglia M.
    Synapse; 1989 Oct 15; 3(4):363-71. PubMed ID: 2525824
    [Abstract] [Full Text] [Related]

  • 14. Modulation of striatal quinolinate neurotoxicity by elevation of endogenous brain kynurenic acid.
    Harris CA, Miranda AF, Tanguay JJ, Boegman RJ, Beninger RJ, Jhamandas K.
    Br J Pharmacol; 1998 May 15; 124(2):391-9. PubMed ID: 9641558
    [Abstract] [Full Text] [Related]

  • 15. Selective sparing of NADPH-diaphorase-somatostatin-neuropeptide Y neurons in ischemic gerbil striatum.
    Uemura Y, Kowall NW, Beal MF.
    Ann Neurol; 1990 Jun 15; 27(6):620-5. PubMed ID: 1972876
    [Abstract] [Full Text] [Related]

  • 16. Sparing of acetylcholinesterase-containing striatal neurons in Huntington's disease.
    Ferrante RJ, Beal MF, Kowall NW, Richardson EP, Martin JB.
    Brain Res; 1987 May 12; 411(1):162-6. PubMed ID: 2955849
    [Abstract] [Full Text] [Related]

  • 17. The fate of striatal dopaminergic neurons in Parkinson's disease and Huntington's chorea.
    Huot P, Lévesque M, Parent A.
    Brain; 2007 Jan 12; 130(Pt 1):222-32. PubMed ID: 17142832
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Administration of recombinant human Activin-A has powerful neurotrophic effects on select striatal phenotypes in the quinolinic acid lesion model of Huntington's disease.
    Hughes PE, Alexi T, Williams CE, Clark RG, Gluckman PD.
    Neuroscience; 1999 Jan 12; 92(1):197-209. PubMed ID: 10392842
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.