These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
739 related items for PubMed ID: 8432732
1. Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape. Gittes F, Mickey B, Nettleton J, Howard J. J Cell Biol; 1993 Feb; 120(4):923-34. PubMed ID: 8432732 [Abstract] [Full Text] [Related]
2. Rigidity of microtubules is increased by stabilizing agents. Mickey B, Howard J. J Cell Biol; 1995 Aug; 130(4):909-17. PubMed ID: 7642706 [Abstract] [Full Text] [Related]
3. Mechanics of microtubule bundles in pillar cells from the inner ear. Tolomeo JA, Holley MC. Biophys J; 1997 Oct; 73(4):2241-7. PubMed ID: 9336220 [Abstract] [Full Text] [Related]
4. Buckling of a single microtubule by optical trapping forces: direct measurement of microtubule rigidity. Kurachi M, Hoshi M, Tashiro H. Cell Motil Cytoskeleton; 1995 Oct; 30(3):221-8. PubMed ID: 7758138 [Abstract] [Full Text] [Related]
5. Tau co-organizes dynamic microtubule and actin networks. Elie A, Prezel E, Guérin C, Denarier E, Ramirez-Rios S, Serre L, Andrieux A, Fourest-Lieuvin A, Blanchoin L, Arnal I. Sci Rep; 2015 May 05; 5():9964. PubMed ID: 25944224 [Abstract] [Full Text] [Related]
8. Temperature dependence rigidity of non-taxol stabilized single microtubules. Kawaguchi K, Yamaguchi A. Biochem Biophys Res Commun; 2010 Nov 05; 402(1):66-9. PubMed ID: 20920471 [Abstract] [Full Text] [Related]
9. Analysis of microtubule rigidity using hydrodynamic flow and thermal fluctuations. Venier P, Maggs AC, Carlier MF, Pantaloni D. J Biol Chem; 1994 May 06; 269(18):13353-60. PubMed ID: 7909808 [Abstract] [Full Text] [Related]
10. A bending mode analysis for growing microtubules: evidence for a velocity-dependent rigidity. Janson ME, Dogterom M. Biophys J; 2004 Oct 06; 87(4):2723-36. PubMed ID: 15454464 [Abstract] [Full Text] [Related]
11. Temperature dependence of the flexural rigidity of single microtubules. Kawaguchi K, Ishiwata S, Yamashita T. Biochem Biophys Res Commun; 2008 Feb 15; 366(3):637-42. PubMed ID: 18068120 [Abstract] [Full Text] [Related]
12. Length-dependence of flexural rigidity as a result of anisotropic elastic properties of microtubules. Li C, Ru CQ, Mioduchowski A. Biochem Biophys Res Commun; 2006 Oct 27; 349(3):1145-50. PubMed ID: 16965761 [Abstract] [Full Text] [Related]
13. Flexural rigidity of individual microtubules measured by a buckling force with optical traps. Kikumoto M, Kurachi M, Tosa V, Tashiro H. Biophys J; 2006 Mar 01; 90(5):1687-96. PubMed ID: 16339879 [Abstract] [Full Text] [Related]
14. Lateral motion and bending of microtubules studied with a new single-filament tracking routine in living cells. Pallavicini C, Levi V, Wetzler DE, Angiolini JF, Benseñor L, Despósito MA, Bruno L. Biophys J; 2014 Jun 17; 106(12):2625-35. PubMed ID: 24940780 [Abstract] [Full Text] [Related]
15. Length dependence of the rigidity of microtubules in small networks. Sharma A, Vershinin M. Biochem Biophys Res Commun; 2020 Aug 20; 529(2):303-305. PubMed ID: 32703427 [Abstract] [Full Text] [Related]
16. Force fluctuations and polymerization dynamics of intracellular microtubules. Brangwynne CP, MacKintosh FC, Weitz DA. Proc Natl Acad Sci U S A; 2007 Oct 09; 104(41):16128-33. PubMed ID: 17911265 [Abstract] [Full Text] [Related]
17. Filament rigidity and connectivity tune the deformation modes of active biopolymer networks. Stam S, Freedman SL, Banerjee S, Weirich KL, Dinner AR, Gardel ML. Proc Natl Acad Sci U S A; 2017 Nov 21; 114(47):E10037-E10045. PubMed ID: 29114058 [Abstract] [Full Text] [Related]
18. Flexural rigidity of singlet microtubules estimated from statistical analysis of their contour lengths and end-to-end distances. Mizushima-Sugano J, Maeda T, Miki-Noumura T. Biochim Biophys Acta; 1983 Jan 25; 755(2):257-62. PubMed ID: 6681986 [Abstract] [Full Text] [Related]
19. Nanomechanics of microtubules. Kis A, Kasas S, Babić B, Kulik AJ, Benoît W, Briggs GA, Schönenberger C, Catsicas S, Forró L. Phys Rev Lett; 2002 Dec 09; 89(24):248101. PubMed ID: 12484982 [Abstract] [Full Text] [Related]
20. Reorganization and translocation of the ectoplasmic cytoskeleton in the leech zygote by condensation of cytasters and interactions of dynamic microtubules and actin filaments. Fernández J, Cantillana V, Ubilla A. Cell Motil Cytoskeleton; 2002 Nov 09; 53(3):214-30. PubMed ID: 12211103 [Abstract] [Full Text] [Related] Page: [Next] [New Search]