These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


256 related items for PubMed ID: 8442768

  • 21. The NADH oxidation domain of complex I: do bacterial and mitochondrial enzymes catalyze ferricyanide reduction similarly?
    Zickermann V, Kurki S, Kervinen M, Hassinen I, Finel M.
    Biochim Biophys Acta; 2000 Jul 20; 1459(1):61-8. PubMed ID: 10924899
    [Abstract] [Full Text] [Related]

  • 22. H+/2e- stoichiometry of the nadh:ubiquinone reductase reaction catalyzed by submitochondrial particles.
    Galkin AS, Grivennikova VG, Vinogradov AD.
    Biochemistry (Mosc); 2001 Apr 20; 66(4):435-43. PubMed ID: 11403652
    [Abstract] [Full Text] [Related]

  • 23. The rotenone-insensitive reduction of quinones and nitrocompounds by mitochondrial NADH:ubiquinone reductase.
    Bironaite DA, Cenas NK, Kulys JJ.
    Biochim Biophys Acta; 1991 Oct 18; 1060(2):203-9. PubMed ID: 1932041
    [Abstract] [Full Text] [Related]

  • 24. Effect of Ca2+ ions on the slow active/inactive transition of the mitochondrial NADH-ubiquinone reductase.
    Kotlyar AB, Sled VD, Vinogradov AD.
    Biochim Biophys Acta; 1992 Jan 16; 1098(2):144-50. PubMed ID: 1730007
    [Abstract] [Full Text] [Related]

  • 25. Oxidation of NADH by a rotenone and antimycin-sensitive pathway in the mitochondrion of procyclic Trypanosoma brucei brucei.
    Beattie DS, Obungu VH, Kiaira JK.
    Mol Biochem Parasitol; 1994 Mar 16; 64(1):87-94. PubMed ID: 8078526
    [Abstract] [Full Text] [Related]

  • 26. A competitive inhibition of the mitochondrial NADH-ubiquinone oxidoreductase (complex I) by ADP-ribose.
    Zharova TV, Vinogradov AD.
    Biochim Biophys Acta; 1997 Jul 04; 1320(3):256-64. PubMed ID: 9230920
    [Abstract] [Full Text] [Related]

  • 27. The reaction sites of rotenone and ubiquinone with mitochondrial NADH dehydrogenase.
    Singer TP, Ramsay RR.
    Biochim Biophys Acta; 1994 Aug 30; 1187(2):198-202. PubMed ID: 8075112
    [Abstract] [Full Text] [Related]

  • 28. Inhibition of mitochondrial electron transport by hydrophilic metal chelators. Determination of dehydrogenase topography.
    Harmon HJ, Crane FL.
    Biochim Biophys Acta; 1976 Jul 09; 440(1):45-58. PubMed ID: 947364
    [Abstract] [Full Text] [Related]

  • 29. Evidence that the blockade of mitochondrial respiration by the neurotoxin 1-methyl-4-phenylpyridinium (MPP+) involves binding at the same site as the respiratory inhibitor, rotenone.
    Krueger MJ, Singer TP, Casida JE, Ramsay RR.
    Biochem Biophys Res Commun; 1990 May 31; 169(1):123-8. PubMed ID: 2350337
    [Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32. Relation of superoxide generation and lipid peroxidation to the inhibition of NADH-Q oxidoreductase by rotenone, piericidin A, and MPP+.
    Ramsay RR, Singer TP.
    Biochem Biophys Res Commun; 1992 Nov 30; 189(1):47-52. PubMed ID: 1333196
    [Abstract] [Full Text] [Related]

  • 33. The role of phospholipids in the reduction of ubiquinone analogues by the mitochondrial reduced nicotinamide-adenine dinucleotide-ubiquinone oxidoreductase complex.
    Ragan CI.
    Biochem J; 1978 Jun 15; 172(3):539-47. PubMed ID: 210762
    [Abstract] [Full Text] [Related]

  • 34. Anticancer action of cubé insecticide: correlation for rotenoid constituents between inhibition of NADH:ubiquinone oxidoreductase and induced ornithine decarboxylase activities.
    Fang N, Casida JE.
    Proc Natl Acad Sci U S A; 1998 Mar 31; 95(7):3380-4. PubMed ID: 9520374
    [Abstract] [Full Text] [Related]

  • 35. Redox cycling of anthracyclines by cardiac mitochondria. I. Anthracycline radical formation by NADH dehydrogenase.
    Davies KJ, Doroshow JH.
    J Biol Chem; 1986 Mar 05; 261(7):3060-7. PubMed ID: 3456345
    [Abstract] [Full Text] [Related]

  • 36. EPR characterization of ubisemiquinones and iron-sulfur cluster N2, central components of the energy coupling in the NADH-ubiquinone oxidoreductase (complex I) in situ.
    Magnitsky S, Toulokhonova L, Yano T, Sled VD, Hägerhäll C, Grivennikova VG, Burbaev DS, Vinogradov AD, Ohnishi T.
    J Bioenerg Biomembr; 2002 Jun 05; 34(3):193-208. PubMed ID: 12171069
    [Abstract] [Full Text] [Related]

  • 37. [Rotenone-insensitive NADH oxydation in mitochondrial suspension occurs by NADH dehydrogenase of respiratory chain fragments].
    Sharova IV, Vekshin NL.
    Biofizika; 2004 Jun 05; 49(5):814-21. PubMed ID: 15526465
    [Abstract] [Full Text] [Related]

  • 38. Reversible dissociation of flavin mononucleotide from the mammalian membrane-bound NADH: ubiquinone oxidoreductase (complex I).
    Gostimskaya IS, Grivennikova VG, Cecchini G, Vinogradov AD.
    FEBS Lett; 2007 Dec 22; 581(30):5803-6. PubMed ID: 18037377
    [Abstract] [Full Text] [Related]

  • 39. Generation of superoxide by the mitochondrial Complex I.
    Grivennikova VG, Vinogradov AD.
    Biochim Biophys Acta; 2006 Dec 22; 1757(5-6):553-61. PubMed ID: 16678117
    [Abstract] [Full Text] [Related]

  • 40. -->H+/2e- stoichiometry in NADH-quinone reductase reactions catalyzed by bovine heart submitochondrial particles.
    Galkin AS, Grivennikova VG, Vinogradov AD.
    FEBS Lett; 1999 May 21; 451(2):157-61. PubMed ID: 10371157
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 13.