These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Static and time-resolved absorption spectroscopy of the bacteriorhodopsin mutant Tyr-185-->Phe: evidence for an equilibrium between bR570 and an O-like species. Sonar S, Krebs MP, Khorana HG, Rothschild KJ. Biochemistry; 1993 Mar 09; 32(9):2263-71. PubMed ID: 8443169 [Abstract] [Full Text] [Related]
7. Ultraviolet-visible transient spectroscopy of bacteriorhodopsin mutants. Evidence for two forms of tyrosine-185----phenylalanine. Duñach M, Berkowitz S, Marti T, He YW, Subramaniam S, Khorana HG, Rothschild KJ. J Biol Chem; 1990 Oct 05; 265(28):16978-84. PubMed ID: 2211603 [Abstract] [Full Text] [Related]
8. Chromophore-protein-water interactions in the L intermediate of bacteriorhodopsin: FTIR study of the photoreaction of L at 80 K. Maeda A, Tomson FL, Gennis RB, Ebrey TG, Balashov SP. Biochemistry; 1999 Jul 06; 38(27):8800-7. PubMed ID: 10393556 [Abstract] [Full Text] [Related]
12. Tyrosine and carboxyl protonation changes in the bacteriorhodopsin photocycle. 1. M412 and L550 intermediates. Roepe P, Ahl PL, Das Gupta SK, Herzfeld J, Rothschild KJ. Biochemistry; 1987 Oct 20; 26(21):6696-707. PubMed ID: 3427038 [Abstract] [Full Text] [Related]
13. Effects of amino acid substitutions in the F helix of bacteriorhodopsin. Low temperature ultraviolet/visible difference spectroscopy. Ahl PL, Stern LJ, Düring D, Mogi T, Khorana HG, Rothschild KJ. J Biol Chem; 1988 Sep 25; 263(27):13594-601. PubMed ID: 3047127 [Abstract] [Full Text] [Related]
14. Vibrational spectroscopy of bacteriorhodopsin mutants. Evidence that Thr-46 and Thr-89 form part of a transient network of hydrogen bonds. Rothschild KJ, He YW, Sonar S, Marti T, Khorana HG. J Biol Chem; 1992 Jan 25; 267(3):1615-22. PubMed ID: 1730706 [Abstract] [Full Text] [Related]
16. Characterization of the conformational change in the M1 and M2 substates of bacteriorhodopsin by the combined use of visible and infrared spectroscopy. Perkins GA, Liu E, Burkard F, Berry EA, Glaeser RM. J Struct Biol; 1992 Jan 25; 109(2):142-51. PubMed ID: 1288615 [Abstract] [Full Text] [Related]
18. Influence of the 9-methyl group of the retinal on the photocycle of bacteriorhodopsin studied by time-resolved rapid-scan and static low-temperature Fourier transform infrared difference spectroscopy. Weidlich O, Friedman N, Sheves M, Siebert F. Biochemistry; 1995 Oct 17; 34(41):13502-10. PubMed ID: 7577939 [Abstract] [Full Text] [Related]
19. Resonance Raman and optical transient studies on the light-induced proton pump of bacteriorhodopsin reveal parallel photocycles. Eisfeld W, Pusch C, Diller R, Lohrmann R, Stockburger M. Biochemistry; 1993 Jul 20; 32(28):7196-215. PubMed ID: 8343509 [Abstract] [Full Text] [Related]
20. Fourier transform infrared spectra of a late intermediate of the bacteriorhodopsin photocycle suggest transient protonation of Asp-212. Dioumaev AK, Brown LS, Needleman R, Lanyi JK. Biochemistry; 1999 Aug 03; 38(31):10070-8. PubMed ID: 10433714 [Abstract] [Full Text] [Related] Page: [Next] [New Search]