These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
116 related items for PubMed ID: 8448150
1. Pre-steady-state kinetics reveal a slow isomerization of the enzyme-NAD complex in the NAD-malic enzyme reaction. Rajapaksa R, Abu-Soud H, Raushel FM, Harris BG, Cook PF. Biochemistry; 1993 Mar 02; 32(8):1928-34. PubMed ID: 8448150 [Abstract] [Full Text] [Related]
2. Substrate activation by malate induced by oxalate in the Ascaris suum NAD-malic enzyme reaction. Park SH, Harris BG, Cook PF. Biochemistry; 1989 Jul 25; 28(15):6334-40. PubMed ID: 2790001 [Abstract] [Full Text] [Related]
3. Protonation mechanism and location of rate-determining steps for the Ascaris suum nicotinamide adenine dinucleotide-malic enzyme reaction from isotope effects and pH studies. Kiick DM, Harris BG, Cook PF. Biochemistry; 1986 Jan 14; 25(1):227-36. PubMed ID: 3513825 [Abstract] [Full Text] [Related]
4. Metal ion activator effects on intrinsic isotope effects for hydride transfer from decarboxylation in the reaction catalyzed by the NAD-malic enzyme from Ascaris suum. Karsten WE, Gavva SR, Park SH, Cook PF. Biochemistry; 1995 Mar 14; 34(10):3253-60. PubMed ID: 7880820 [Abstract] [Full Text] [Related]
5. Multiple roles of arginine 181 in binding and catalysis in the NAD-malic enzyme from Ascaris suum. Karsten WE, Cook PF. Biochemistry; 2007 Dec 18; 46(50):14578-88. PubMed ID: 18027982 [Abstract] [Full Text] [Related]
6. Mechanism of activation of the NAD-malic enzyme from Ascaris suum by fumarate. Lai CJ, Harris BG, Cook PF. Arch Biochem Biophys; 1992 Dec 18; 299(2):214-9. PubMed ID: 1444459 [Abstract] [Full Text] [Related]
7. Ascaris suum NAD-malic enzyme is activated by L-malate and fumarate binding to separate allosteric sites. Karsten WE, Pais JE, Rao GS, Harris BG, Cook PF. Biochemistry; 2003 Aug 19; 42(32):9712-21. PubMed ID: 12911313 [Abstract] [Full Text] [Related]
8. A catalytic triad is responsible for acid-base chemistry in the Ascaris suum NAD-malic enzyme. Karsten WE, Liu D, Rao GS, Harris BG, Cook PF. Biochemistry; 2005 Mar 08; 44(9):3626-35. PubMed ID: 15736972 [Abstract] [Full Text] [Related]
9. Alpha-secondary tritium kinetic isotope effects indicate hydrogen tunneling and coupled motion occur in the oxidation of L-malate by NAD-malic enzyme. Karsten WE, Hwang CC, Cook PF. Biochemistry; 1999 Apr 06; 38(14):4398-402. PubMed ID: 10194359 [Abstract] [Full Text] [Related]
10. Metal-Induced reversible structural interconversion of human mitochondrial NAD(P)+-dependent malic enzyme. Kuo CW, Hung HC, Tong L, Chang GG. Proteins; 2004 Feb 15; 54(3):404-11. PubMed ID: 14747989 [Abstract] [Full Text] [Related]
11. Kinetic mechanism in the direction of oxidative decarboxylation for NAD-malic enzyme from Ascaris suum. Park SH, Kiick DM, Harris BG, Cook PF. Biochemistry; 1984 Nov 06; 23(23):5446-53. PubMed ID: 6509028 [Abstract] [Full Text] [Related]
12. Isotope partitioning for NAD-malic enzyme from Ascaris suum confirms a steady-state random kinetic mechanism. Chen CY, Harris BG, Cook PF. Biochemistry; 1988 Jan 12; 27(1):212-9. PubMed ID: 3280016 [Abstract] [Full Text] [Related]
13. Crystallographic studies on Ascaris suum NAD-malic enzyme bound to reduced cofactor and identification of an effector site. Rao GS, Coleman DE, Karsten WE, Cook PF, Harris BG. J Biol Chem; 2003 Sep 26; 278(39):38051-8. PubMed ID: 12853453 [Abstract] [Full Text] [Related]
14. Tartrate dehydrogenase catalyzes the stepwise oxidative decarboxylation of D-malate with both NAD and thio-NAD. Karsten WE, Tipton PA, Cook PF. Biochemistry; 2002 Oct 08; 41(40):12193-9. PubMed ID: 12356321 [Abstract] [Full Text] [Related]
15. Role of residues in the adenosine binding site of NAD of the Ascaris suum malic enzyme. Aktas DF, Cook PF. Biochim Biophys Acta; 2008 Dec 08; 1784(12):2059-64. PubMed ID: 18725329 [Abstract] [Full Text] [Related]
16. Multiple isotope effects with alternative dinucleotide substrates as a probe of the malic enzyme reaction. Weiss PM, Gavva SR, Harris BG, Urbauer JL, Cleland WW, Cook PF. Biochemistry; 1991 Jun 11; 30(23):5755-63. PubMed ID: 2043615 [Abstract] [Full Text] [Related]
17. Modification of a thiol at the active site of the Ascaris suum NAD-malic enzyme results in changes in the rate-determining steps for oxidative decarboxylation of L-malate. Gavva SR, Harris BG, Weiss PM, Cook PF. Biochemistry; 1991 Jun 11; 30(23):5764-9. PubMed ID: 2043616 [Abstract] [Full Text] [Related]
18. Role of the divalent metal ion in the NAD:malic enzyme reaction: an ESEEM determination of the ground state conformation of malate in the E:Mn:malate complex. Tipton PA, Quinn TP, Peisach J, Cook PF. Protein Sci; 1996 Aug 11; 5(8):1648-54. PubMed ID: 8844853 [Abstract] [Full Text] [Related]
19. Determination of the mechanism of human malic enzyme with natural and alternate dinucleotides by isotope effects. Rishavy MA, Yang Z, Tong L, Cleland WW. Arch Biochem Biophys; 2001 Dec 01; 396(1):43-8. PubMed ID: 11716460 [Abstract] [Full Text] [Related]
20. Proper positioning of the nicotinamide ring is crucial for the Ascaris suum malic enzyme reaction. Aktas DF, Cook PF. Biochemistry; 2008 Feb 26; 47(8):2539-46. PubMed ID: 18215074 [Abstract] [Full Text] [Related] Page: [Next] [New Search]