These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
182 related items for PubMed ID: 8464813
1. Peptide carrier-mediated transport in intestinal brush border membrane vesicles of rats and rabbits: cephradine uptake and inhibition. Yuasa H, Amidon GL, Fleisher D. Pharm Res; 1993 Mar; 10(3):400-4. PubMed ID: 8464813 [Abstract] [Full Text] [Related]
2. Transport characteristics of cephalosporin antibiotics across intestinal brush-border membrane in man, rat and rabbit. Sugawara M, Toda T, Iseki K, Miyazaki K, Shiroto H, Kondo Y, Uchino J. J Pharm Pharmacol; 1992 Dec; 44(12):968-72. PubMed ID: 1361560 [Abstract] [Full Text] [Related]
3. Noncompetitive inhibition of cephradine uptake by enalapril in rabbit intestinal brush-border membrane vesicles: an enalapril specific inhibitory binding site on the peptide carrier. Yuasa H, Fleisher D, Amidon GL. J Pharmacol Exp Ther; 1994 Jun; 269(3):1107-11. PubMed ID: 8014854 [Abstract] [Full Text] [Related]
4. Intestinal brush-border transport of the oral cephalosporin antibiotic, cefdinir, mediated by dipeptide and monocarboxylic acid transport systems in rabbits. Tsuji A, Tamai I, Nakanishi M, Terasaki T, Hamano S. J Pharm Pharmacol; 1993 Nov; 45(11):996-8. PubMed ID: 7908046 [Abstract] [Full Text] [Related]
7. Comparison of transport characteristics of amino beta-lactam antibiotics and dipeptides across rat intestinal brush border membrane. Iseki K, Sugawara M, Saitoh H, Miyazaki K, Arita T. J Pharm Pharmacol; 1989 Sep; 41(9):628-32. PubMed ID: 2573708 [Abstract] [Full Text] [Related]
8. H+ gradient-dependent transport of aminocephalosporins in rat intestinal brush-border membrane vesicles. Role of dipeptide transport system. Okano T, Inui K, Takano M, Hori R. Biochem Pharmacol; 1986 Jun 01; 35(11):1781-6. PubMed ID: 3718527 [Abstract] [Full Text] [Related]
9. Direct photoaffinity labelling of binding proteins for beta-lactam antibiotics in rabbit intestinal brush border membranes with [3H]benzylpenicillin. Kramer W, Girbig F, Leipe I, Petzoldt E. Biochem Pharmacol; 1988 Jun 15; 37(12):2427-35. PubMed ID: 3390206 [Abstract] [Full Text] [Related]
11. Characteristics of uptake of cefroxadine by rabbit small intestinal brush border membrane vesicles. Kitagawa S, Sugaya Y. Biol Pharm Bull; 1996 Feb 15; 19(2):268-73. PubMed ID: 8850320 [Abstract] [Full Text] [Related]
12. Thyrotropin-releasing hormone (TRH) uptake in intestinal brush-border membrane vesicles: comparison with proton-coupled dipeptide and Na(+)-coupled glucose transport. Thwaites DT, Simmons NL, Hirst BH. Pharm Res; 1993 May 15; 10(5):667-73. PubMed ID: 8391693 [Abstract] [Full Text] [Related]
13. Inhibitory effects of angiotensin-converting enzyme inhibitor on cefroxadine uptake by rabbit small intestinal brush border membrane vesicles. Kitagawa S, Takeda J, Kaseda Y, Sato S. Biol Pharm Bull; 1997 Apr 15; 20(4):449-51. PubMed ID: 9145229 [Abstract] [Full Text] [Related]
14. Transport of glycyl-L-proline by human intestinal brush border membrane vesicles. Rajendran VM, Ansari SA, Harig JM, Adams MB, Khan AH, Ramaswamy K. Gastroenterology; 1985 Dec 15; 89(6):1298-304. PubMed ID: 4054522 [Abstract] [Full Text] [Related]
15. H+ coupled uphill transport of aminocephalosporins via the dipeptide transport system in rabbit intestinal brush-border membranes. Okano T, Inui K, Maegawa H, Takano M, Hori R. J Biol Chem; 1986 Oct 25; 261(30):14130-4. PubMed ID: 3021727 [Abstract] [Full Text] [Related]
16. H+ coupled active transport of bestatin via the dipeptide transport system in rabbit intestinal brush-border membranes. Inui K, Tomita Y, Katsura T, Okano T, Takano M, Hori R. J Pharmacol Exp Ther; 1992 Feb 25; 260(2):482-6. PubMed ID: 1738097 [Abstract] [Full Text] [Related]
17. Effect of various chemical modifiers on H+ coupled transport of cephradine via dipeptide carriers in rabbit intestinal brush-border membranes: role of histidine residues. Kato M, Maegawa H, Okano T, Inui K, Hori R. J Pharmacol Exp Ther; 1989 Nov 25; 251(2):745-9. PubMed ID: 2810124 [Abstract] [Full Text] [Related]
18. Interactions of cephradine and cefaclor with the intestinal absorption of D-galactose. Idoate I, Mendizábal MV, Urdaneta E, Larralde J. J Pharm Pharmacol; 1996 Jun 25; 48(6):645-50. PubMed ID: 8832502 [Abstract] [Full Text] [Related]
19. pH-dependent inhibitory effects of angiotensin-converting enzyme inhibitors on cefroxadine uptake by rabbit small intestinal brush-border membrane vesicles and their relationship with hydrophobicity and the ratio of zwitterionic species. Kitagawa S, Takeda J, Sato S. Biol Pharm Bull; 1999 Jul 25; 22(7):721-4. PubMed ID: 10443470 [Abstract] [Full Text] [Related]
20. Intestinal absorption studies on peptide mimetic alpha-methyldopa prodrugs. Wang HP, Lu HH, Lee JS, Cheng CY, Mah JR, Ku CY, Hsu W, Yen CF, Lin CJ, Kuo HS. J Pharm Pharmacol; 1996 Mar 25; 48(3):270-6. PubMed ID: 8737052 [Abstract] [Full Text] [Related] Page: [Next] [New Search]