These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


130 related items for PubMed ID: 8467639

  • 21. Extraction of a plasma time-activity curve from dynamic brain PET images based on independent component analysis.
    Naganawa M, Kimura Y, Ishii K, Oda K, Ishiwata K, Matani A.
    IEEE Trans Biomed Eng; 2005 Feb; 52(2):201-10. PubMed ID: 15709657
    [Abstract] [Full Text] [Related]

  • 22. [Basic study on relationship between estimated rate constants and noise in FDG kinetic analysis].
    Kimura Y, Toyama H, Senda M.
    Kaku Igaku; 1996 Feb; 33(2):107-14. PubMed ID: 8721098
    [Abstract] [Full Text] [Related]

  • 23. Dynamic imaging and tracer kinetic modeling for emission tomography using rotating detectors.
    Lau CH, Feng D, Hutton BF, Lun DP, Siu WC.
    IEEE Trans Med Imaging; 1998 Dec; 17(6):986-94. PubMed ID: 10048855
    [Abstract] [Full Text] [Related]

  • 24. Analysis of kinetic rate constants in [18F]fluorodeoxyglucose model using a least square fitting package SALS (statistical analysis with least squares).
    Uehara S, Kuwabara Y, Ichiya Y, Otsuka M, Ayabe Y, Miyake Y, Masuda K, Yoshimura A.
    Radioisotopes; 1987 Dec; 36(12):653-6. PubMed ID: 3502293
    [Abstract] [Full Text] [Related]

  • 25. Linear least squares compartmental-model-independent parameter identification in PET.
    Thie JA, Smith GT, Hubner KF.
    IEEE Trans Med Imaging; 1997 Feb; 16(1):11-6. PubMed ID: 9050404
    [Abstract] [Full Text] [Related]

  • 26. Estimation of local cerebral glucose utilization by positron emission tomography: comparison of [18F]2-fluoro-2-deoxy-D-glucose and [18F]2-fluoro-2-deoxy-D-mannose in patients with focal brain lesions.
    Wienhard K, Pawlik G, Nebeling B, Rudolf J, Fink G, Hamacher K, Stöcklin G, Heiss WD.
    J Cereb Blood Flow Metab; 1991 May; 11(3):485-91. PubMed ID: 2016357
    [Abstract] [Full Text] [Related]

  • 27. A kinetic comparison of [18F]2-fluoro-2-deoxyglucose and [18F]2-fluoro-2-deoxymannose using positron emission tomography.
    Braun AR, Carson RE, Adams HR, Finn RD, Francis BE, Herscovitch P.
    Nucl Med Biol; 1994 Aug; 21(6):857-63. PubMed ID: 9234335
    [Abstract] [Full Text] [Related]

  • 28. Use of ridge regression for improved estimation of kinetic constants from PET data.
    O'Sullivan F, Saha A.
    IEEE Trans Med Imaging; 1999 Feb; 18(2):115-25. PubMed ID: 10232668
    [Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30. A general algorithm for optimal sampling schedule design in nuclear medicine imaging.
    Li X, Feng D, Wong K.
    Comput Methods Programs Biomed; 2001 Apr; 65(1):45-59. PubMed ID: 11223150
    [Abstract] [Full Text] [Related]

  • 31. "Population" approach improves parameter estimation of kinetic models from dynamic PET data.
    Bertoldo A, Sparacino G, Cobelli C.
    IEEE Trans Med Imaging; 2004 Mar; 23(3):297-306. PubMed ID: 15027522
    [Abstract] [Full Text] [Related]

  • 32. Preclinical dynamic 18F-FDG PET - tumor characterization and radiotherapy response assessment by kinetic compartment analysis.
    Røe K, Aleksandersen TB, Kristian A, Nilsen LB, Seierstad T, Qu H, Ree AH, Olsen DR, Malinen E.
    Acta Oncol; 2010 Oct; 49(7):914-21. PubMed ID: 20831478
    [Abstract] [Full Text] [Related]

  • 33. Performance evaluation of kinetic parameter estimation methods in dynamic FDG-PET studies.
    Dai X, Chen Z, Tian J.
    Nucl Med Commun; 2011 Jan; 32(1):4-16. PubMed ID: 21166088
    [Abstract] [Full Text] [Related]

  • 34. Non-stationary spatial filtering and accelerated curve fitting for parametric imaging with dynamic PET.
    Herholz K.
    Eur J Nucl Med; 1988 Jan; 14(9-10):477-84. PubMed ID: 3265103
    [Abstract] [Full Text] [Related]

  • 35. Kinetic modelling using basis functions derived from two-tissue compartmental models with a plasma input function: general principle and application to [18F]fluorodeoxyglucose positron emission tomography.
    Hong YT, Fryer TD.
    Neuroimage; 2010 May 15; 51(1):164-72. PubMed ID: 20156574
    [Abstract] [Full Text] [Related]

  • 36. Estimation of local cerebral glucose utilization by positron emission tomography of [18F]2-fluoro-2-deoxy-D-glucose: a critical appraisal of optimization procedures.
    Wienhard K, Pawlik G, Herholz K, Wagner R, Heiss WD.
    J Cereb Blood Flow Metab; 1985 Mar 15; 5(1):115-25. PubMed ID: 3871780
    [Abstract] [Full Text] [Related]

  • 37. Parametric images of myocardial metabolic rate of glucose generated from dynamic cardiac PET and 2-[18F]fluoro-2-deoxy-d-glucose studies.
    Choi Y, Hawkins RA, Huang SC, Gambhir SS, Brunken RC, Phelps ME, Schelbert HR.
    J Nucl Med; 1991 Apr 15; 32(4):733-8. PubMed ID: 2013815
    [Abstract] [Full Text] [Related]

  • 38. Noninvasive quantification of the differential portal and arterial contribution to the liver blood supply from PET measurements using the 11C-acetate kinetic model.
    Chen S, Feng D.
    IEEE Trans Biomed Eng; 2004 Sep 15; 51(9):1579-85. PubMed ID: 15376506
    [Abstract] [Full Text] [Related]

  • 39. [18F]fluorodeoxyglucose uptake in tumors: kinetic vs. steady-state methods with reference to plasma insulin.
    Minn H, Leskinen-Kallio S, Lindholm P, Bergman J, Ruotsalainen U, Teräs M, Haaparanta M.
    J Comput Assist Tomogr; 1993 Sep 15; 17(1):115-23. PubMed ID: 8419418
    [Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 7.