These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
213 related items for PubMed ID: 8476278
21. Thermophilic anaerobic degradation of butyrate by a butyrate-utilizing bacterium in coculture and triculture with methanogenic bacteria. Ahring BK, Westermann P. Appl Environ Microbiol; 1987 Feb; 53(2):429-33. PubMed ID: 16347292 [Abstract] [Full Text] [Related]
22. Syntrophic propionate degradation response to temperature decrease and microbial community shift in an UASB reactor. Ban Q, Li J, Zhang L, Jha AK, Zhang Y, Ai B. J Microbiol Biotechnol; 2013 Mar; 23(3):382-9. PubMed ID: 23462012 [Abstract] [Full Text] [Related]
23. Characterization of the anaerobic propionate-degrading syntrophs Smithella propionica gen. nov., sp. nov. and Syntrophobacter wolinii. Liu Y, Balkwill DL, Aldrich HC, Drake GR, Boone DR. Int J Syst Bacteriol; 1999 Apr; 49 Pt 2():545-56. PubMed ID: 10319475 [Abstract] [Full Text] [Related]
24. Enrichment of amino acid-oxidizing, acetate-reducing bacteria. Ato M, Ishii M, Igarashi Y. J Biosci Bioeng; 2014 Aug; 118(2):160-5. PubMed ID: 24630616 [Abstract] [Full Text] [Related]
25. High sulfate reduction efficiency in a UASB using an alternative source of sulfidogenic sludge derived from hydrothermal vent sediments. García-Solares SM, Ordaz A, Monroy-Hermosillo O, Jan-Roblero J, Guerrero-Barajas C. Appl Biochem Biotechnol; 2014 Dec; 174(8):2919-40. PubMed ID: 25234397 [Abstract] [Full Text] [Related]
26. Syntrophothermus lipocalidus gen. nov., sp. nov., a novel thermophilic, syntrophic, fatty-acid-oxidizing anaerobe which utilizes isobutyrate. Sekiguchi Y, Kamagata Y, Nakamura K, Ohashi A, Harada H. Int J Syst Evol Microbiol; 2000 Mar; 50 Pt 2():771-779. PubMed ID: 10758888 [Abstract] [Full Text] [Related]
27. Desulfotomaculum thermobenzoicum subsp. thermosyntrophicum subsp. nov., a thermophilic, syntrophic, propionate-oxidizing, spore-forming bacterium. Plugge CM, Balk M, Stams AJM. Int J Syst Evol Microbiol; 2002 Mar; 52(Pt 2):391-399. PubMed ID: 11931147 [Abstract] [Full Text] [Related]
28. Biogas process parameters--energetics and kinetics of secondary fermentations in methanogenic biomass degradation. Montag D, Schink B. Appl Microbiol Biotechnol; 2016 Jan; 100(2):1019-26. PubMed ID: 26515561 [Abstract] [Full Text] [Related]
29. Metabolic interactions in methanogenic and sulfate-reducing bioreactors. Stams AJ, Plugge CM, de Bok FA, van Houten BH, Lens P, Dijkman H, Weijma J. Water Sci Technol; 2005 Jan; 52(1-2):13-20. PubMed ID: 16187442 [Abstract] [Full Text] [Related]
30. Inhibitory Effect of Coumarin on Syntrophic Fatty Acid-Oxidizing and Methanogenic Cultures and Biogas Reactor Microbiomes. Popp D, Plugge CM, Kleinsteuber S, Harms H, Sträuber H. Appl Environ Microbiol; 2017 Jul 01; 83(13):. PubMed ID: 28432098 [Abstract] [Full Text] [Related]
31. Inhibitory effects of antibiotic combinations on syntrophic bacteria, homoacetogens and methanogens. Aydin S, Cetecioglu Z, Arikan O, Ince B, Ozbayram EG, Ince O. Chemosphere; 2015 Feb 01; 120():515-20. PubMed ID: 25290357 [Abstract] [Full Text] [Related]
33. Cysteine-Accelerated Methanogenic Propionate Degradation in Paddy Soil Enrichment. Zhuang L, Ma J, Tang J, Tang Z, Zhou S. Microb Ecol; 2017 May 01; 73(4):916-924. PubMed ID: 27815590 [Abstract] [Full Text] [Related]
34. Effect of medium composition and sludge removal on the production, composition, and architecture of thermophilic (55 degrees C) acetate-utilizing granules from an upflow anaerobic sludge blanket reactor. Ahring BK, Schmidt JE, Winther-Nielsen M, Macario AJ, Conway de Macario E. Appl Environ Microbiol; 1993 Aug 01; 59(8):2538-45. PubMed ID: 8368841 [Abstract] [Full Text] [Related]
35. Role of formate and hydrogen in the degradation of propionate and butyrate by defined suspended cocultures of acetogenic and methanogenic bacteria. Stams AJ, Dong X. Antonie Van Leeuwenhoek; 1995 Nov 01; 68(4):281-4. PubMed ID: 8821782 [Abstract] [Full Text] [Related]
36. Dynamics of the anaerobic process: effects of volatile fatty acids. Pind PF, Angelidaki I, Ahring BK. Biotechnol Bioeng; 2003 Jun 30; 82(7):791-801. PubMed ID: 12701145 [Abstract] [Full Text] [Related]
37. Formation of Fatty Acid-degrading, anaerobic granules by defined species. Wu W, Jain MK, Zeikus JG. Appl Environ Microbiol; 1996 Jun 30; 62(6):2037-44. PubMed ID: 16535336 [Abstract] [Full Text] [Related]