These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


169 related items for PubMed ID: 8477693

  • 21. The overexpression of the CDC25 gene of Saccharomyces cerevisiae causes a derepression of GAL system and an increase of GAL4 transcription.
    Rudoni S, Mauri I, Ceriani M, Coccetti P, Martegani E.
    Int J Biochem Cell Biol; 2000 Feb; 32(2):215-24. PubMed ID: 10687955
    [Abstract] [Full Text] [Related]

  • 22. An additional homolog of the fission yeast cdc25+ gene occurs in humans and is highly expressed in some cancer cells.
    Nagata A, Igarashi M, Jinno S, Suto K, Okayama H.
    New Biol; 1991 Oct; 3(10):959-68. PubMed ID: 1662986
    [Abstract] [Full Text] [Related]

  • 23. Two subclasses of guanine exchange factor (GEF) domains revealed by comparison of activities of chimeric genes constructed from CDC25, SDC25 and BUD5 in Saccharomyces cerevisiae.
    Camus C, Boy-Marcotte E, Jacquet M.
    Mol Gen Genet; 1994 Oct 28; 245(2):167-76. PubMed ID: 7816024
    [Abstract] [Full Text] [Related]

  • 24. Identification of a putative transcription factor in Candida albicans that can complement the mating defect of Saccharomyces cerevisiae ste12 mutants.
    Malathi K, Ganesan K, Datta A.
    J Biol Chem; 1994 Sep 16; 269(37):22945-51. PubMed ID: 8083193
    [Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28. A mouse CDC25-like product enhances the formation of the active GTP complex of human ras p21 and Saccharomyces cerevisiae RAS2 proteins.
    Jacquet E, Vanoni M, Ferrari C, Alberghina L, Martegani E, Parmeggiani A.
    J Biol Chem; 1992 Dec 05; 267(34):24181-3. PubMed ID: 1447167
    [Abstract] [Full Text] [Related]

  • 29. The Cdc25 protein of Saccharomyces cerevisiae is required for normal glucose transport.
    Silljé HH, ter Schure EG, Verkleij AJ, Boonstra J, Verrips CT.
    Microbiology (Reading); 1996 Jul 05; 142 ( Pt 7)():1765-73. PubMed ID: 8757740
    [Abstract] [Full Text] [Related]

  • 30. Cloning and characterization of NSP1, a locus encoding a component of a CDC25-dependent, nutrient-responsive pathway in Saccharomyces cerevisiae.
    Tripp ML, Bouchard RA, Piñón R.
    Mol Microbiol; 1989 Oct 05; 3(10):1319-27. PubMed ID: 2693892
    [Abstract] [Full Text] [Related]

  • 31. Identification of a mammalian gene structurally and functionally related to the CDC25 gene of Saccharomyces cerevisiae.
    Wei W, Mosteller RD, Sanyal P, Gonzales E, McKinney D, Dasgupta C, Li P, Liu BX, Broek D.
    Proc Natl Acad Sci U S A; 1992 Aug 01; 89(15):7100-4. PubMed ID: 1379731
    [Abstract] [Full Text] [Related]

  • 32. Cloning of the STE5 gene of Saccharomyces cerevisiae as a suppressor of the mating defect of cdc25 temperature-sensitive mutants.
    Perlman R, Yablonski D, Simchen G, Levitzki A.
    Proc Natl Acad Sci U S A; 1993 Jun 15; 90(12):5474-8. PubMed ID: 8516289
    [Abstract] [Full Text] [Related]

  • 33. Divergence of eukaryotic secretory components: the Candida albicans homolog of the Saccharomyces cerevisiae ++Sec20 protein is N terminally truncated, and its levels determine antifungal drug resistance and growth.
    Weber Y, Santore UJ, Ernst JF, Swoboda RK.
    J Bacteriol; 2001 Jan 15; 183(1):46-54. PubMed ID: 11114899
    [Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35. Identification of a Candida albicans homologue of the PHO85 gene, a negative regulator of the PHO system in Saccharomyces cerevisiae.
    Miyakawa Y.
    Yeast; 2000 Aug 15; 16(11):1045-51. PubMed ID: 10923026
    [Abstract] [Full Text] [Related]

  • 36. Isolation and characterization of the Candida albicans PFY1 gene for profilin.
    Ostrander DB, Gorman JA.
    Yeast; 1997 Jul 15; 13(9):871-80. PubMed ID: 9234675
    [Abstract] [Full Text] [Related]

  • 37. Candida albicans INT1-induced filamentation in Saccharomyces cerevisiae depends on Sla2p.
    Asleson CM, Bensen ES, Gale CA, Melms AS, Kurischko C, Berman J.
    Mol Cell Biol; 2001 Feb 15; 21(4):1272-84. PubMed ID: 11158313
    [Abstract] [Full Text] [Related]

  • 38. Activation of adenylate cyclase in cdc25 mutants of Saccharomyces cerevisiae.
    Pardo LA, Lazo PS, Ramos S.
    FEBS Lett; 1993 Mar 22; 319(3):237-43. PubMed ID: 8458416
    [Abstract] [Full Text] [Related]

  • 39. Saccharomyces cerevisiae CDC25 (1028-1589) is a guanine nucleotide releasing factor for mammalian ras proteins and is oncogenic in NIH3T3 cells.
    Chevallier-Multon MC, Schweighoffer F, Barlat I, Baudouy N, Fath I, Duchesne M, Tocqué B.
    J Biol Chem; 1993 May 25; 268(15):11113-8. PubMed ID: 8388382
    [Abstract] [Full Text] [Related]

  • 40. The SH3 domain of the S. cerevisiae Cdc25p binds adenylyl cyclase and facilitates Ras regulation of cAMP signalling.
    Mintzer KA, Field J.
    Cell Signal; 1999 Feb 25; 11(2):127-35. PubMed ID: 10048790
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 9.