These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
158 related items for PubMed ID: 8478332
21. Constitutive ATP hydrolysis and transcription activation by a stable, truncated form of Rhizobium meliloti DCTD, a sigma 54-dependent transcriptional activator. Lee JH, Scholl D, Nixon BT, Hoover TR. J Biol Chem; 1994 Aug 12; 269(32):20401-9. PubMed ID: 8051135 [Abstract] [Full Text] [Related]
22. Rhizobium leguminosarum nodulation gene (nod) expression is lowered by an allele-specific mutation in the dicarboxylate transport gene dctB. Mavridou A, Barny MA, Poole P, Plaskitt K, Davies AE, Johnston AW, Downie JA. Microbiology (Reading); 1995 Jan 12; 141 ( Pt 1)():103-11. PubMed ID: 7894701 [Abstract] [Full Text] [Related]
23. Purification and characterization of the AAA+ domain of Sinorhizobium meliloti DctD, a sigma54-dependent transcriptional activator. Xu H, Gu B, Nixon BT, Hoover TR. J Bacteriol; 2004 Jun 12; 186(11):3499-507. PubMed ID: 15150237 [Abstract] [Full Text] [Related]
24. CRP interacts with promoter-bound sigma54 RNA polymerase and blocks transcriptional activation of the dctA promoter. Wang YP, Kolb A, Buck M, Wen J, O'Gara F, Buc H. EMBO J; 1998 Feb 02; 17(3):786-96. PubMed ID: 9451003 [Abstract] [Full Text] [Related]
25. Genetic analysis and regulation of the Rhizobium meliloti genes controlling C4-dicarboxylic acid transport. Wang YP, Birkenhead K, Boesten B, Manian S, O'Gara F. Gene; 1989 Dec 21; 85(1):135-44. PubMed ID: 2695394 [Abstract] [Full Text] [Related]
26. Novel substitutions in the sigma54-dependent activator DctD that increase dependence on upstream activation sequences or uncouple ATP hydrolysis from transcriptional activation. Xu H, Kelly MT, Nixon BT, Hoover TR. Mol Microbiol; 2004 Oct 21; 54(1):32-44. PubMed ID: 15458403 [Abstract] [Full Text] [Related]
27. Identification of C(4)-dicarboxylate transport systems in Pseudomonas aeruginosa PAO1. Valentini M, Storelli N, Lapouge K. J Bacteriol; 2011 Sep 21; 193(17):4307-16. PubMed ID: 21725012 [Abstract] [Full Text] [Related]
28. Deduced products of C4-dicarboxylate transport regulatory genes of Rhizobium leguminosarum are homologous to nitrogen regulatory gene products. Ronson CW, Astwood PM, Nixon BT, Ausubel FM. Nucleic Acids Res; 1987 Oct 12; 15(19):7921-34. PubMed ID: 3671068 [Abstract] [Full Text] [Related]
29. Isolation and characterization of Azospirillum lipoferum locus that complements Rhizobium meliloti dctA and dctB mutations. Tripathi AK, Mishra BM. Can J Microbiol; 1996 May 12; 42(5):503-6. PubMed ID: 8640608 [Abstract] [Full Text] [Related]
30. Two C4-dicarboxylate transport systems in Rhizobium sp. NGR234: rhizobial dicarboxylate transport is essential for nitrogen fixation in tropical legume symbioses. van Slooten JC, Bhuvanasvari TV, Bardin S, Stanley J. Mol Plant Microbe Interact; 1992 May 12; 5(2):179-86. PubMed ID: 1617199 [Abstract] [Full Text] [Related]
31. Inactivation and regulation of the aerobic C(4)-dicarboxylate transport (dctA) gene of Escherichia coli. Davies SJ, Golby P, Omrani D, Broad SA, Harrington VL, Guest JR, Kelly DJ, Andrews SC. J Bacteriol; 1999 Sep 12; 181(18):5624-35. PubMed ID: 10482502 [Abstract] [Full Text] [Related]
32. Cooperative binding of DctD to the dctA upstream activation sequence of Rhizobium meliloti is enhanced in a constitutively active truncated mutant. Scholl D, Nixon BT. J Biol Chem; 1996 Oct 18; 271(42):26435-42. PubMed ID: 8824302 [Abstract] [Full Text] [Related]
33. The sensor kinase DctS forms a tripartite sensor unit with DctB and DctA for sensing C4-dicarboxylates in Bacillus subtilis. Graf S, Schmieden D, Tschauner K, Hunke S, Unden G. J Bacteriol; 2014 Mar 18; 196(5):1084-93. PubMed ID: 24375102 [Abstract] [Full Text] [Related]
34. Mutational analysis of the phosphate-binding loop of Rhizobium meliloti DctD, a sigma54-dependent activator. Gao Y, Wang YK, Hoover TR. J Bacteriol; 1998 May 18; 180(10):2792-5. PubMed ID: 9573172 [Abstract] [Full Text] [Related]
35. Sinorhizobium meliloti dctA mutants with partial ability to transport dicarboxylic acids. Yurgel SN, Kahn ML. J Bacteriol; 2005 Feb 18; 187(3):1161-72. PubMed ID: 15659691 [Abstract] [Full Text] [Related]
36. Identification and characterization of a two-component sensor-kinase and response-regulator system (DcuS-DcuR) controlling gene expression in response to C4-dicarboxylates in Escherichia coli. Golby P, Davies S, Kelly DJ, Guest JR, Andrews SC. J Bacteriol; 1999 Feb 18; 181(4):1238-48. PubMed ID: 9973351 [Abstract] [Full Text] [Related]
37. Purification and preliminary X-ray crystallographic analysis of the ligand-binding domain of Sinorhizobium meliloti DctB. Nan B, Zhou Y, Liang YH, Wen J, Ma Q, Zhang S, Wang Y, Su XD. Biochim Biophys Acta; 2006 Apr 18; 1764(4):839-41. PubMed ID: 16332458 [Abstract] [Full Text] [Related]
38. A conserved region in the sigma54-dependent activator DctD is involved in both binding to RNA polymerase and coupling ATP hydrolysis to activation. Wang YK, Lee JH, Brewer JM, Hoover TR. Mol Microbiol; 1997 Oct 18; 26(2):373-86. PubMed ID: 9383161 [Abstract] [Full Text] [Related]
39. Nucleotide-dependent conformational changes in the sigma54-dependent activator DctD. Wang YK, Park S, Nixon BT, Hoover TR. J Bacteriol; 2003 Oct 18; 185(20):6215-9. PubMed ID: 14526036 [Abstract] [Full Text] [Related]