These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


225 related items for PubMed ID: 8478343

  • 21. A simulation environment for validating ultrasonic blood flow and vessel wall imaging based on fluid-structure interaction simulations: ultrasonic assessment of arterial distension and wall shear rate.
    Swillens A, Degroote J, Vierendeels J, Lovstakken L, Segers P.
    Med Phys; 2010 Aug; 37(8):4318-30. PubMed ID: 20879592
    [Abstract] [Full Text] [Related]

  • 22. Anharmonic analysis of arterial blood pressure and flow pulses.
    Voltairas PA, Fotiadis DI, Massalas CV, Michalis LK.
    J Biomech; 2005 Jul; 38(7):1423-31. PubMed ID: 15922753
    [Abstract] [Full Text] [Related]

  • 23. A non-Newtonian fluid model for blood flow through arteries under stenotic conditions.
    Misra JC, Patra MK, Misra SC.
    J Biomech; 1993 Sep; 26(9):1129-41. PubMed ID: 8408094
    [Abstract] [Full Text] [Related]

  • 24. Pulsatile flow of non-Newtonian blood fluid inside stenosed arteries: Investigating the effects of viscoelastic and elastic walls, arteriosclerosis, and polycythemia diseases.
    Nejad AA, Talebi Z, Cheraghali D, Shahbani-Zahiri A, Norouzi M.
    Comput Methods Programs Biomed; 2018 Feb; 154():109-122. PubMed ID: 29249336
    [Abstract] [Full Text] [Related]

  • 25. A turbulence model for pulsatile arterial flows.
    Younis BA, Berger SA.
    J Biomech Eng; 2004 Oct; 126(5):578-84. PubMed ID: 15648810
    [Abstract] [Full Text] [Related]

  • 26. Fundamental flow studies in models of human arteries.
    Liepsch D.
    Front Med Biol Eng; 1993 Oct; 5(1):51-5. PubMed ID: 8323883
    [Abstract] [Full Text] [Related]

  • 27. Pulsatile flow in a constricted channel.
    Tutty OR.
    J Biomech Eng; 1992 Feb; 114(1):50-4. PubMed ID: 1491586
    [Abstract] [Full Text] [Related]

  • 28. Developing steady laminar flow through uniform straight tubes with varying wall cross curvature.
    Naili S, Thiriet M, Ribreau C.
    Comput Methods Biomech Biomed Engin; 2004 Dec; 7(6):319-30. PubMed ID: 15621652
    [Abstract] [Full Text] [Related]

  • 29. Wall shear stress--an important determinant of endothelial cell function and structure--in the arterial system in vivo. Discrepancies with theory.
    Reneman RS, Arts T, Hoeks AP.
    J Vasc Res; 2006 Dec; 43(3):251-69. PubMed ID: 16491020
    [Abstract] [Full Text] [Related]

  • 30. Microcontinuum model for pulsatile blood flow through a stenosed tube.
    Chaturani P, Palanisamy V.
    Biorheology; 1989 Dec; 26(4):835-46. PubMed ID: 2611375
    [Abstract] [Full Text] [Related]

  • 31. [A new hemodynamic endothelial approach using non-invasive evaluation of instantaneous wall shear in human arteries. Application in arterial hypertension].
    Colin JM, Del-Pino M, Aouate JP, Flaud P, Levenson J, Simon A.
    Arch Mal Coeur Vaiss; 1990 Jul; 83(8):1201-3. PubMed ID: 2148077
    [Abstract] [Full Text] [Related]

  • 32. A model for blood flow through a stenotic tube.
    Tandon PN, Rana UV, Kawahara M, Katiyar VK.
    Int J Biomed Comput; 1993 Jan; 32(1):61-78. PubMed ID: 8425753
    [Abstract] [Full Text] [Related]

  • 33. The characterization of a non-Newtonian blood analog in natural- and shear-layer-induced transitional flow.
    Li L, Walker AM, Rival DE.
    Biorheology; 2014 Jan; 51(4-5):275-91. PubMed ID: 25281596
    [Abstract] [Full Text] [Related]

  • 34. A mathematical model for blood flow through an arterial bifurcation.
    Tandon PN, Kawahara M, Rana UV.
    Int J Biomed Comput; 1994 May; 35(4):309-25. PubMed ID: 8063457
    [Abstract] [Full Text] [Related]

  • 35. Accurate prediction of wall shear stress in a stented artery: newtonian versus non-newtonian models.
    Mejia J, Mongrain R, Bertrand OF.
    J Biomech Eng; 2011 Jul; 133(7):074501. PubMed ID: 21823750
    [Abstract] [Full Text] [Related]

  • 36. Effect of Varying Viscosity on Two-Fluid Model of Blood Flow through Constricted Blood Vessels: A Comparative Study.
    Tiwari A, Chauhan SS.
    Cardiovasc Eng Technol; 2019 Mar; 10(1):155-172. PubMed ID: 30302623
    [Abstract] [Full Text] [Related]

  • 37. Non-Newtonian blood flow in human right coronary arteries: steady state simulations.
    Johnston BM, Johnston PR, Corney S, Kilpatrick D.
    J Biomech; 2004 May; 37(5):709-20. PubMed ID: 15047000
    [Abstract] [Full Text] [Related]

  • 38. Influence of non-Newtonian behavior of blood on flow in an elastic artery model.
    Dutta A, Tarbell JM.
    J Biomech Eng; 1996 Feb; 118(1):111-9. PubMed ID: 8833082
    [Abstract] [Full Text] [Related]

  • 39. Numerical simulation of sinusoidal flow in a straight elastic tube: effects of phase angles.
    Dutta A, Tarbell JM.
    Biorheology; 1989 Feb; 26(1):1-22. PubMed ID: 2804271
    [Abstract] [Full Text] [Related]

  • 40. A comparison of estimation methods for computational fluid dynamics outflow boundary conditions using patient-specific carotid artery.
    Lee CJ, Uemiya N, Ishihara S, Zhang Y, Qian Y.
    Proc Inst Mech Eng H; 2013 Jun; 227(6):663-71. PubMed ID: 23636745
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 12.