These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


244 related items for PubMed ID: 8489512

  • 1. Role of tryptophan-388 of GLUT1 glucose transporter in glucose-transport activity and photoaffinity-labelling with forskolin.
    Katagiri H, Asano T, Ishihara H, Lin JL, Inukai K, Shanahan MF, Tsukuda K, Kikuchi M, Yazaki Y, Oka Y.
    Biochem J; 1993 May 01; 291 ( Pt 3)(Pt 3):861-7. PubMed ID: 8489512
    [Abstract] [Full Text] [Related]

  • 2. Glucose transport activity and photolabelling with 3-[125I]iodo-4-azidophenethylamido-7-O-succinyldeacetyl (IAPS)-forskolin of two mutants at tryptophan-388 and -412 of the glucose transporter GLUT1: dissociation of the binding domains of forskolin and glucose.
    Schürmann A, Keller K, Monden I, Brown FM, Wandel S, Shanahan MF, Joost HG.
    Biochem J; 1993 Mar 01; 290 ( Pt 2)(Pt 2):497-501. PubMed ID: 8452538
    [Abstract] [Full Text] [Related]

  • 3. Replacement of both tryptophan residues at 388 and 412 completely abolished cytochalasin B photolabelling of the GLUT1 glucose transporter.
    Inukai K, Asano T, Katagiri H, Anai M, Funaki M, Ishihara H, Tsukuda K, Kikuchi M, Yazaki Y, Oka Y.
    Biochem J; 1994 Sep 01; 302 ( Pt 2)(Pt 2):355-61. PubMed ID: 8092986
    [Abstract] [Full Text] [Related]

  • 4. Characterization of GLUT3 protein expressed in Chinese hamster ovary cells.
    Asano T, Katagiri H, Takata K, Tsukuda K, Lin JL, Ishihara H, Inukai K, Hirano H, Yazaki Y, Oka Y.
    Biochem J; 1992 Nov 15; 288 ( Pt 1)(Pt 1):189-93. PubMed ID: 1445263
    [Abstract] [Full Text] [Related]

  • 5. Substitution of leucine for tryptophan 412 does not abolish cytochalasin B labeling but markedly decreases the intrinsic activity of GLUT1 glucose transporter.
    Katagiri H, Asano T, Shibasaki Y, Lin JL, Tsukuda K, Ishihara H, Akanuma Y, Takaku F, Oka Y.
    J Biol Chem; 1991 Apr 25; 266(12):7769-73. PubMed ID: 2019601
    [Abstract] [Full Text] [Related]

  • 6. The glucose transport activity of GLUT1 is markedly decreased by substitution of a single amino acid with a different charge at residue 415.
    Ishihara H, Asano T, Katagiri H, Lin JL, Tsukuda K, Shibasaki Y, Yazaki Y, Oka Y.
    Biochem Biophys Res Commun; 1991 Apr 30; 176(2):922-30. PubMed ID: 2025301
    [Abstract] [Full Text] [Related]

  • 7. Amino acid substitutions at tryptophan 388 and tryptophan 412 of the HepG2 (Glut1) glucose transporter inhibit transport activity and targeting to the plasma membrane in Xenopus oocytes.
    Garcia JC, Strube M, Leingang K, Keller K, Mueckler MM.
    J Biol Chem; 1992 Apr 15; 267(11):7770-6. PubMed ID: 1560011
    [Abstract] [Full Text] [Related]

  • 8. Suppressed intrinsic catalytic activity of GLUT1 glucose transporters in insulin-sensitive 3T3-L1 adipocytes.
    Harrison SA, Buxton JM, Czech MP.
    Proc Natl Acad Sci U S A; 1991 Sep 01; 88(17):7839-43. PubMed ID: 1881918
    [Abstract] [Full Text] [Related]

  • 9. The role of N-glycosylation of GLUT1 for glucose transport activity.
    Asano T, Katagiri H, Takata K, Lin JL, Ishihara H, Inukai K, Tsukuda K, Kikuchi M, Hirano H, Yazaki Y.
    J Biol Chem; 1991 Dec 25; 266(36):24632-6. PubMed ID: 1761560
    [Abstract] [Full Text] [Related]

  • 10. Analysis of the structural features of the C-terminus of GLUT1 that are required for transport catalytic activity.
    Muraoka A, Hashiramoto M, Clark AE, Edwards LC, Sakura H, Kadowaki T, Holman GD, Kasuga M.
    Biochem J; 1995 Oct 15; 311 ( Pt 2)(Pt 2):699-704. PubMed ID: 7487915
    [Abstract] [Full Text] [Related]

  • 11. The predicted ATP-binding domains in the hexose transporter GLUT1 critically affect transporter activity.
    Liu Q, Vera JC, Peng H, Golde DW.
    Biochemistry; 2001 Jul 03; 40(26):7874-81. PubMed ID: 11425315
    [Abstract] [Full Text] [Related]

  • 12. Role of the C-terminal tail of the GLUT1 glucose transporter in its expression and function in Xenopus laevis oocytes.
    Due AD, Qu ZC, Thomas JM, Buchs A, Powers AC, May JM.
    Biochemistry; 1995 Apr 25; 34(16):5462-71. PubMed ID: 7727404
    [Abstract] [Full Text] [Related]

  • 13. Glucose transporter isoforms GLUT1 and GLUT3 transport dehydroascorbic acid.
    Rumsey SC, Kwon O, Xu GW, Burant CF, Simpson I, Levine M.
    J Biol Chem; 1997 Jul 25; 272(30):18982-9. PubMed ID: 9228080
    [Abstract] [Full Text] [Related]

  • 14. Substitution at Pro385 of GLUT1 perturbs the glucose transport function by reducing conformational flexibility.
    Tamori Y, Hashiramoto M, Clark AE, Mori H, Muraoka A, Kadowaki T, Holman GD, Kasuga M.
    J Biol Chem; 1994 Jan 28; 269(4):2982-6. PubMed ID: 8300630
    [Abstract] [Full Text] [Related]

  • 15. Evidence that erythroid-type glucose transporter intrinsic activity is modulated by cadmium treatment of mouse 3T3-L1 cells.
    Harrison SA, Buxton JM, Clancy BM, Czech MP.
    J Biol Chem; 1991 Oct 15; 266(29):19438-49. PubMed ID: 1918056
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Rapid substrate translocation by the multisubunit, erythroid glucose transporter requires subunit associations but not cooperative ligand binding.
    Coderre PE, Cloherty EK, Zottola RJ, Carruthers A.
    Biochemistry; 1995 Aug 01; 34(30):9762-73. PubMed ID: 7626647
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.