These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


113 related items for PubMed ID: 8490583

  • 21. Vanadium haloperoxidase-catalyzed bromination and cyclization of terpenes.
    Carter-Franklin JN, Parrish JD, Tschirret-Guth RA, Little RD, Butler A.
    J Am Chem Soc; 2003 Apr 02; 125(13):3688-9. PubMed ID: 12656585
    [Abstract] [Full Text] [Related]

  • 22. Cometabolic biotransformation of nitrobenzene by 3-nitrophenol degrading Pseudomonas putida 2NP8.
    Zhao JS, Ward OP.
    Can J Microbiol; 2000 Jul 02; 46(7):643-52. PubMed ID: 10932358
    [Abstract] [Full Text] [Related]

  • 23. Catalytic oxidation of p-cresol by ascorbate peroxidase.
    Celik A, Cullis PM, Lloyd Raven E.
    Arch Biochem Biophys; 2000 Jan 01; 373(1):175-81. PubMed ID: 10620336
    [Abstract] [Full Text] [Related]

  • 24. Substrate selectivity of a 3-nitrophenol-induced metabolic system in Pseudomonas putida 2NP8 transforming nitroaromatic compounds into ammonia under aerobic conditions.
    Zhao JS, Ward OP.
    Appl Environ Microbiol; 2001 Mar 01; 67(3):1388-91. PubMed ID: 11229938
    [Abstract] [Full Text] [Related]

  • 25. Degradation of chloronitrobenzenes by a coculture of Pseudomonas putida and a Rhodococcus sp.
    Park HS, Lim SJ, Chang YK, Livingston AG, Kim HS.
    Appl Environ Microbiol; 1999 Mar 01; 65(3):1083-91. PubMed ID: 10049867
    [Abstract] [Full Text] [Related]

  • 26. Peroxidase-mediated bromination of unsaturated fatty acids to form bromohydrins.
    Carr AC, Winterbourn CC, van den Berg JJ.
    Arch Biochem Biophys; 1996 Mar 15; 327(2):227-33. PubMed ID: 8619607
    [Abstract] [Full Text] [Related]

  • 27. Expression of the vanadium-dependent bromoperoxidase gene from a marine macro-alga Corallina pilulifera in Saccharomyces cerevisiae and characterization of the recombinant enzyme.
    Ohshiro T, Hemrika W, Aibara T, Wever R, Izumi Y.
    Phytochemistry; 2002 Jul 15; 60(6):595-601. PubMed ID: 12126706
    [Abstract] [Full Text] [Related]

  • 28. Characterization of the oxidized states of bromoperoxidase.
    Manthey JA, Hager LP.
    J Biol Chem; 1985 Aug 15; 260(17):9654-9. PubMed ID: 2991256
    [Abstract] [Full Text] [Related]

  • 29. Crystal structure of dodecameric vanadium-dependent bromoperoxidase from the red algae Corallina officinalis.
    Isupov MN, Dalby AR, Brindley AA, Izumi Y, Tanabe T, Murshudov GN, Littlechild JA.
    J Mol Biol; 2000 Jun 16; 299(4):1035-49. PubMed ID: 10843856
    [Abstract] [Full Text] [Related]

  • 30. Characterization of nonheme type bromoperoxidase in Corallina pilulifera.
    Itoh N, Izumi Y, Yamada H.
    J Biol Chem; 1986 Apr 15; 261(11):5194-200. PubMed ID: 3957919
    [Abstract] [Full Text] [Related]

  • 31. The role of vanadium bromoperoxidase in the biosynthesis of halogenated marine natural products.
    Butler A, Carter-Franklin JN.
    Nat Prod Rep; 2004 Feb 15; 21(1):180-8. PubMed ID: 15039842
    [Abstract] [Full Text] [Related]

  • 32. Effect of strophanthin G on peroxidase oxidation kinetics of slowly oxidizable peroxidase substrates.
    Rogozhin VV, Rogozhina TV.
    Biochemistry (Mosc); 2000 May 15; 65(5):558-64. PubMed ID: 10851032
    [Abstract] [Full Text] [Related]

  • 33. Aniline degradation by electrocatalytic oxidation.
    Li Y, Wang F, Zhou G, Ni Y.
    Chemosphere; 2003 Dec 15; 53(10):1229-34. PubMed ID: 14550354
    [Abstract] [Full Text] [Related]

  • 34. Vanadate activation of bromoperoxidase from Corallina officinalis.
    Yu H, Whittaker JW.
    Biochem Biophys Res Commun; 1989 Apr 14; 160(1):87-92. PubMed ID: 2540754
    [Abstract] [Full Text] [Related]

  • 35. Heme-protein covalent bonds in peroxidases and resistance to heme modification during halide oxidation.
    Huang L, Ortiz de Montellano PR.
    Arch Biochem Biophys; 2006 Feb 01; 446(1):77-83. PubMed ID: 16375846
    [Abstract] [Full Text] [Related]

  • 36. Oxidation of 4-tert-butylcatechol and dopamine by hydrogen peroxide catalysed by horseradish peroxidase.
    García-Moreno M, Moreno-Conesa M, Rodríguez-López JN, García-Cánovas F, Varón R.
    Biol Chem; 1999 Jun 01; 380(6):689-94. PubMed ID: 10430033
    [Abstract] [Full Text] [Related]

  • 37. Effects of nitrobenzene contamination and of bioaugmentation on nitrification and ammonia-oxidizing bacteria in soil.
    Zhao S, Ramette A, Niu GL, Liu H, Zhou NY.
    FEMS Microbiol Ecol; 2009 Nov 01; 70(2):159-67. PubMed ID: 19825042
    [Abstract] [Full Text] [Related]

  • 38. Protein engineering of toluene 4-monooxygenase of Pseudomonas mendocina KR1 for synthesizing 4-nitrocatechol from nitrobenzene.
    Fishman A, Tao Y, Bentley WE, Wood TK.
    Biotechnol Bioeng; 2004 Sep 20; 87(6):779-90. PubMed ID: 15329936
    [Abstract] [Full Text] [Related]

  • 39. Protein engineering of toluene-o-xylene monooxygenase from Pseudomonas stutzeri OX1 for oxidizing nitrobenzene to 3-nitrocatechol, 4-nitrocatechol, and nitrohydroquinone.
    Vardar G, Ryu K, Wood TK.
    J Biotechnol; 2005 Jan 26; 115(2):145-56. PubMed ID: 15607233
    [Abstract] [Full Text] [Related]

  • 40. Prosthetic heme modification during halide ion oxidation. Demonstration of chloride oxidation by horseradish peroxidase.
    Huang L, Wojciechowski G, Ortiz de Montellano PR.
    J Am Chem Soc; 2005 Apr 20; 127(15):5345-53. PubMed ID: 15826172
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 6.