These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
126 related items for PubMed ID: 8500624
1. Evolutionary relationships between yeast and bacterial homoserine dehydrogenases. Thomas D, Barbey R, Surdin-Kerjan Y. FEBS Lett; 1993 Jun 01; 323(3):289-93. PubMed ID: 8500624 [Abstract] [Full Text] [Related]
2. Cloning and nucleotide sequence of the Bacillus subtilis hom gene coding for homoserine dehydrogenase. Structural and evolutionary relationships with Escherichia coli aspartokinases-homoserine dehydrogenases I and II. Parsot C, Cohen GN. J Biol Chem; 1988 Oct 15; 263(29):14654-60. PubMed ID: 3139660 [Abstract] [Full Text] [Related]
3. Cloning and nucleotide sequences of the homoserine dehydrogenase genes (hom) and the threonine synthase genes (thrC) of the gram-negative obligate methylotroph Methylobacillus glycogenes. Motoyama H, Maki K, Anazawa H, Ishino S, Teshiba S. Appl Environ Microbiol; 1994 Jan 15; 60(1):111-9. PubMed ID: 8117070 [Abstract] [Full Text] [Related]
4. Transcriptional and biochemical regulation of a novel Arabidopsis thaliana bifunctional aspartate kinase-homoserine dehydrogenase gene isolated by functional complementation of a yeast hom6 mutant. Rognes SE, Dewaele E, Aas SF, Jacobs M, Frankard V. Plant Mol Biol; 2003 Jan 15; 51(2):281-94. PubMed ID: 12602885 [Abstract] [Full Text] [Related]
5. Yeast homoserine kinase. Characteristics of the corresponding gene, THR1, and the purified enzyme, and evolutionary relationships with other enzymes of threonine metabolism. Mannhaupt G, Pohlenz HD, Seefluth AK, Pilz U, Feldmann H. Eur J Biochem; 1990 Jul 20; 191(1):115-22. PubMed ID: 2165904 [Abstract] [Full Text] [Related]
6. Identification and expression of a cDNA from Daucus carota encoding a bifunctional aspartokinase-homoserine dehydrogenase. Weisemann JM, Matthews BF. Plant Mol Biol; 1993 May 20; 22(2):301-12. PubMed ID: 8507831 [Abstract] [Full Text] [Related]
7. Nucleotide sequence of the Serratia marcescens threonine operon and analysis of the threonine operon mutations which alter feedback inhibition of both aspartokinase I and homoserine dehydrogenase I. Omori K, Imai Y, Suzuki S, Komatsubara S. J Bacteriol; 1993 Feb 20; 175(3):785-94. PubMed ID: 8423151 [Abstract] [Full Text] [Related]
8. Molecular cloning of the hom-thrC-thrB cluster from Bacillus sp. ULM1: expression of the thrC gene in Escherichia coli and corynebacteria, and evolutionary relationships of the threonine genes. Malumbres M, Mateos LM, Guerrero C, Martín JF. Folia Microbiol (Praha); 1995 Feb 20; 40(6):595-606. PubMed ID: 8768250 [Abstract] [Full Text] [Related]
10. FKBP12 controls aspartate pathway flux in Saccharomyces cerevisiae to prevent toxic intermediate accumulation. Arévalo-Rodríguez M, Pan X, Boeke JD, Heitman J. Eukaryot Cell; 2004 Oct 15; 3(5):1287-96. PubMed ID: 15470257 [Abstract] [Full Text] [Related]
11. Internal homologies in the two aspartokinase-homoserine dehydrogenases of Escherichia coli K-12. Ferrara P, Duchange N, Zakin MM, Cohen GN. Proc Natl Acad Sci U S A; 1984 May 15; 81(10):3019-23. PubMed ID: 6374650 [Abstract] [Full Text] [Related]
12. Evolutionary comparisons of three enzymes of the threonine biosynthetic pathway among several microbial species. Cami B, Clepet C, Patte JC. Biochimie; 1993 May 15; 75(6):487-95. PubMed ID: 8395899 [Abstract] [Full Text] [Related]
13. Analysis of a Corynebacterium glutamicum hom gene coding for a feedback-resistant homoserine dehydrogenase. Reinscheid DJ, Eikmanns BJ, Sahm H. J Bacteriol; 1991 May 15; 173(10):3228-30. PubMed ID: 1902466 [Abstract] [Full Text] [Related]
14. A C-terminal deletion in Corynebacterium glutamicum homoserine dehydrogenase abolishes allosteric inhibition by L-threonine. Archer JA, Solow-Cordero DE, Sinskey AJ. Gene; 1991 Oct 30; 107(1):53-9. PubMed ID: 1743520 [Abstract] [Full Text] [Related]
15. Nucleotide sequence of the metL gene of Escherichia coli. Its product, the bifunctional aspartokinase ii-homoserine dehydrogenase II, and the bifunctional product of the thrA gene, aspartokinase I-homoserine dehydrogenase I, derive from a common ancestor. Zakin MM, Duchange N, Ferrara P, Cohen GN. J Biol Chem; 1983 Mar 10; 258(5):3028-31. PubMed ID: 6298218 [No Abstract] [Full Text] [Related]
16. Characterization of yeast homoserine dehydrogenase, an antifungal target: the invariant histidine 309 is important for enzyme integrity. Jacques SL, Nieman C, Bareich D, Broadhead G, Kinach R, Honek JF, Wright GD. Biochim Biophys Acta; 2001 Jan 12; 1544(1-2):28-41. PubMed ID: 11341914 [Abstract] [Full Text] [Related]
17. Nucleotide sequence of the dihydrofolate reductase gene of Saccharomyces cerevisiae. Fling ME, Kopf J, Richards CA. Gene; 1988 Mar 31; 63(2):165-74. PubMed ID: 2838385 [Abstract] [Full Text] [Related]
18. Similarity of Escherichia coli propanediol oxidoreductase (fucO product) and an unusual alcohol dehydrogenase from Zymomonas mobilis and Saccharomyces cerevisiae. Conway T, Ingram LO. J Bacteriol; 1989 Jul 31; 171(7):3754-9. PubMed ID: 2661535 [Abstract] [Full Text] [Related]
19. Nucleotide sequence of Escherichia coli argB and argC genes: comparison of N-acetylglutamate kinase and N-acetylglutamate-gamma-semialdehyde dehydrogenase with homologous and analogous enzymes. Parsot C, Boyen A, Cohen GN, Glansdorff N. Gene; 1988 Sep 07; 68(2):275-83. PubMed ID: 2851495 [Abstract] [Full Text] [Related]
20. Cloning and nucleotide sequence of the gene for dihydrolipoamide acetyltransferase from Saccharomyces cerevisiae. Niu XD, Browning KS, Behal RH, Reed LJ. Proc Natl Acad Sci U S A; 1988 Oct 07; 85(20):7546-50. PubMed ID: 3050999 [Abstract] [Full Text] [Related] Page: [Next] [New Search]