These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
136 related items for PubMed ID: 8504118
1. Alamethicin as a permeabilizing agent for measurements of Ca(2+)-dependent ATPase activity in proteoliposomes, sealed membrane vesicles, and whole cells. Ritov VB, Murzakhmetova MK, Tverdislova IL, Menshikova EV, Butylin AA, Avakian TYu, Yakovenko LV. Biochim Biophys Acta; 1993 Jun 05; 1148(2):257-62. PubMed ID: 8504118 [Abstract] [Full Text] [Related]
2. Reconstitution experiments provide no evidence for a role for the 53-kDa glycoprotein in coupling Ca2+ transport to ATP hydrolysis by the (Ca(2+)-Mg2+)-ATPase in sarcoplasmic reticulum. Grimes EA, Burgess AJ, East JM, Lee AG. Biochim Biophys Acta; 1991 May 07; 1064(2):335-42. PubMed ID: 1827997 [Abstract] [Full Text] [Related]
3. Uncoupling of Ca2+ transport from ATP hydrolysis activity of sarcoplasmic reticulum (Ca2+ + Mg2+)-ATPase. Cao CJ, Lockwich T, Scott TL, Blumenthal R, Shamoo AE. Mol Cell Biochem; 1991 May 15; 103(2):97-111. PubMed ID: 1649382 [Abstract] [Full Text] [Related]
4. ATP-dependent calcium transport and its correlation with Ca2+ -ATPase activity in basolateral plasma membranes of rat duodenum. Ghijsen WE, De Jong MD, Van Os CH. Biochim Biophys Acta; 1982 Jul 28; 689(2):327-36. PubMed ID: 6214277 [Abstract] [Full Text] [Related]
5. Influence of the 53 kDa glycoprotein on the cooperativity of the Ca(2+)-ATPase of the sarcoplasmic reticulum. Kutchai H, Boyd K, Xu Q, Weis CP. Biochim Biophys Acta; 1991 Apr 26; 1064(1):49-54. PubMed ID: 1827351 [Abstract] [Full Text] [Related]
6. Uncoupling of ATP splitting from Ca(2+)-transport in Ca(2+)-transporting ATPase of the sarcoplasmic reticulum as a result of modification by N-(3-pyrene)maleimide: activation of a channel with a specificity for alkaline earth metal ions. Suzuki T, Kawakita M. J Biochem; 1993 Aug 26; 114(2):203-9. PubMed ID: 8262900 [Abstract] [Full Text] [Related]
7. ATP-dependent phosphate transport in sarcoplasmic reticulum and reconstituted proteoliposomes. Carley WW, Racker E. Biochim Biophys Acta; 1982 May 19; 680(2):187-93. PubMed ID: 6212081 [Abstract] [Full Text] [Related]
8. Comparison of the effects of fluoride on the calcium pumps of cardiac and fast skeletal muscle sarcoplasmic reticulum: evidence for tissue-specific qualitative difference in calcium-induced pump conformation. Hawkins C, Xu A, Narayanan N. Biochim Biophys Acta; 1994 May 11; 1191(2):231-43. PubMed ID: 8172909 [Abstract] [Full Text] [Related]
9. Coupling of Ca2+ transport to ATP hydrolysis by the Ca2+-ATPase of sarcoplasmic reticulum: potential role of the 53-kilodalton glycoprotein. Leonards KS, Kutchai H. Biochemistry; 1985 Aug 27; 24(18):4876-84. PubMed ID: 2934086 [Abstract] [Full Text] [Related]
10. Origin of concurrent ATPase activities in skinned cardiac trabeculae from rat. Ebus JP, Stienen GJ. J Physiol; 1996 May 01; 492 ( Pt 3)(Pt 3):675-87. PubMed ID: 8734981 [Abstract] [Full Text] [Related]
11. [Energy-dependent redistribution of a lipophilic anion in sarcoplasmic reticulum vesicles and Ca2-ATPase molecules]. Loginov VA, Levitskiĭ DO, Lebedev AV. Biokhimiia; 1984 Jun 01; 49(6):958-64. PubMed ID: 6235862 [Abstract] [Full Text] [Related]
12. Adenylate cyclase in sarcoplasmic reticulum of skeletal muscle: distribution, orientation, and regulation. Nakagawa M, Willner JH. J Cyclic Nucleotide Protein Phosphor Res; 1986 Jun 01; 11(4):237-51. PubMed ID: 3025274 [Abstract] [Full Text] [Related]
13. Temperature sensitivity of proteoliposomes reconstituted from a mixture of scallop and rabbit sarcoplasmic reticulum Ca2+-ATPases. Nagata Y, Nakamura J, Yamamoto T. J Biochem; 1997 Apr 01; 121(4):648-53. PubMed ID: 9163513 [Abstract] [Full Text] [Related]
14. Coupling of calcium transport with ATP hydrolysis in scallop sarcoplasmic reticulum. Matsuo N, Nagata Y, Nakamura J, Yamamoto T. J Biochem; 2002 Mar 01; 131(3):375-81. PubMed ID: 11872166 [Abstract] [Full Text] [Related]
15. Transmembrane Ca2+ gradient-mediated modulation of sarcoplasmic reticulum Ca(2+)-ATPase. Tu YP, Yang FY. Biochem Biophys Res Commun; 1993 Oct 29; 196(2):561-8. PubMed ID: 8240328 [Abstract] [Full Text] [Related]
16. Interactions of vanadate oligomers with sarcoplasmic reticulum Ca(2+)-ATPase. Aureliano M, Mdeira VM. Biochim Biophys Acta; 1994 Apr 28; 1221(3):259-71. PubMed ID: 8167147 [Abstract] [Full Text] [Related]
17. Characteristics of Ca2(+)-stimulated ATPase in rat heart sarcolemma in the presence of dithiothreitol and alamethicin. Seppet EK, Dhalla NS. Mol Cell Biochem; 1994 Apr 28; 91(1-2):137-47. PubMed ID: 2533664 [Abstract] [Full Text] [Related]
18. Thermal uncoupling of the Ca(2+)-transporting ATPase in sarcoplasmic reticulum. Changes in surface properties of light vesicles. Geimonen E, Batrukova MA, Rubtsov AM. Eur J Biochem; 1994 Oct 01; 225(1):347-54. PubMed ID: 7925455 [Abstract] [Full Text] [Related]
19. Correlation between uncoupled ATP hydrolysis and heat production by the sarcoplasmic reticulum Ca2+-ATPase: coupling effect of fluoride. Reis M, Farage M, de Souza AC, de Meis L. J Biol Chem; 2001 Nov 16; 276(46):42793-800. PubMed ID: 11544263 [Abstract] [Full Text] [Related]
20. Regulation of Ca2+ transport by sarcoplasmic reticulum Ca2+-ATPase at limiting [Ca2+]. Berman MC. Biochim Biophys Acta; 1999 Apr 14; 1418(1):48-60. PubMed ID: 10209210 [Abstract] [Full Text] [Related] Page: [Next] [New Search]