These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
374 related items for PubMed ID: 8508783
1. The glucose-6-phosphate-isomerase reaction is essential for normal glucose repression in Saccharomyces cerevisiae. Sierkstra LN, Silljé HH, Verbakel JM, Verrips CT. Eur J Biochem; 1993 May 15; 214(1):121-7. PubMed ID: 8508783 [Abstract] [Full Text] [Related]
2. Novel alleles of yeast hexokinase PII with distinct effects on catalytic activity and catabolite repression of SUC2. Hohmann S, Winderickx J, de Winde JH, Valckx D, Cobbaert P, Luyten K, de Meirsman C, Ramos J, Thevelein JM. Microbiology (Reading); 1999 Mar 15; 145 ( Pt 3)():703-714. PubMed ID: 10217505 [Abstract] [Full Text] [Related]
3. Using phosphoglucose isomerase-deficient (pgi1Δ) Saccharomyces cerevisiae to map the impact of sugar phosphate levels on D-glucose and D-xylose sensing. Borgström C, Persson VC, Rogova O, Osiro KO, Lundberg E, Spégel P, Gorwa-Grauslund M. Microb Cell Fact; 2022 Dec 01; 21(1):253. PubMed ID: 36456947 [Abstract] [Full Text] [Related]
4. Analysis of transcription and translation of glycolytic enzymes in glucose-limited continuous cultures of Saccharomyces cerevisiae. Sierkstra LN, Verbakel JM, Verrips CT. J Gen Microbiol; 1992 Dec 01; 138(12):2559-66. PubMed ID: 1487726 [Abstract] [Full Text] [Related]
5. Studies on the mechanism of the glucose-induced cAMP signal in glycolysis and glucose repression mutants of the yeast Saccharomyces cerevisiae. Beullens M, Mbonyi K, Geerts L, Gladines D, Detremerie K, Jans AW, Thevelein JM. Eur J Biochem; 1988 Feb 15; 172(1):227-31. PubMed ID: 2831059 [Abstract] [Full Text] [Related]
9. Xylose and some non-sugar carbon sources cause catabolite repression in Saccharomyces cerevisiae. Belinchón MM, Gancedo JM. Arch Microbiol; 2003 Oct 15; 180(4):293-7. PubMed ID: 12955310 [Abstract] [Full Text] [Related]
11. Different signals control the activation of glycolysis in the yeast Saccharomyces cerevisiae. Boles E, Heinisch J, Zimmermann FK. Yeast; 1993 Jul 15; 9(7):761-70. PubMed ID: 8368010 [Abstract] [Full Text] [Related]
12. Steady-state and transient-state analysis of growth and metabolite production in a Saccharomyces cerevisiae strain with reduced pyruvate-decarboxylase activity. Flikweert MT, Kuyper M, van Maris AJ, Kötter P, van Dijken JP, Pronk JT. Biotechnol Bioeng; 1999 Jul 15; 66(1):42-50. PubMed ID: 10556793 [Abstract] [Full Text] [Related]
13. Regulation of glycolytic enzymes and the Crabtree effect in galactose-limited continuous cultures of Saccharomyces cerevisiae. Sierkstra LN, Nouwen NP, Verbakel JM, Verrips CT. Yeast; 1993 Jul 15; 9(7):787-95. PubMed ID: 8368013 [Abstract] [Full Text] [Related]
14. The effects of disruption of phosphoglucose isomerase gene on carbon utilisation and cellulase production in Trichoderma reesei Rut-C30. Limón MC, Pakula T, Saloheimo M, Penttilä M. Microb Cell Fact; 2011 May 24; 10():40. PubMed ID: 21609467 [Abstract] [Full Text] [Related]
15. Effects of null mutations in the hexokinase genes of Saccharomyces cerevisiae on catabolite repression. Ma H, Botstein D. Mol Cell Biol; 1986 Nov 24; 6(11):4046-52. PubMed ID: 3540605 [Abstract] [Full Text] [Related]
19. Mutations suppressing the effects of a deletion of the phosphoglucose isomerase gene PGI1 in Saccharomyces cerevisiae. Aguilera A. Curr Genet; 1987 Nov 24; 11(6-7):429-34. PubMed ID: 3329972 [Abstract] [Full Text] [Related]