These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Identification of residues critical for the polymerase activity of the Klenow fragment of DNA polymerase I from Escherichia coli. Polesky AH, Steitz TA, Grindley ND, Joyce CM. J Biol Chem; 1990 Aug 25; 265(24):14579-91. PubMed ID: 2201688 [Abstract] [Full Text] [Related]
23. Functional consequences and exonuclease kinetic parameters of point mutations in bacteriophage T4 DNA polymerase. Abdus Sattar AK, Lin TC, Jones C, Konigsberg WH. Biochemistry; 1996 Dec 24; 35(51):16621-9. PubMed ID: 8987997 [Abstract] [Full Text] [Related]
24. Side chains involved in catalysis of the polymerase reaction of DNA polymerase I from Escherichia coli. Polesky AH, Dahlberg ME, Benkovic SJ, Grindley ND, Joyce CM. J Biol Chem; 1992 Apr 25; 267(12):8417-28. PubMed ID: 1569092 [Abstract] [Full Text] [Related]
25. Determinants of DNA mismatch recognition within the polymerase domain of the Klenow fragment. Thompson EH, Bailey MF, van der Schans EJ, Joyce CM, Millar DP. Biochemistry; 2002 Jan 22; 41(3):713-22. PubMed ID: 11790092 [Abstract] [Full Text] [Related]
26. Fidelity of mispair formation and mispair extension is dependent on the interaction between the minor groove of the primer terminus and Arg668 of DNA polymerase I of Escherichia coli. McCain MD, Meyer AS, Schultz SS, Glekas A, Spratt TE. Biochemistry; 2005 Apr 19; 44(15):5647-59. PubMed ID: 15823023 [Abstract] [Full Text] [Related]
28. DNA binding domain of Escherichia coli DNA polymerase I: identification of arginine-841 as an essential residue. Mohan PM, Basu A, Basu S, Abraham KI, Modak MJ. Biochemistry; 1988 Jan 12; 27(1):226-33. PubMed ID: 3280017 [Abstract] [Full Text] [Related]
29. [Affinity modification of DNA polymerase I from Escherichia coli and its Klenow fragment with nucleotide imidazolides]. Doronin SV, Nevinskiĭ GA, Khomov VV, Lavrik OI. Mol Biol (Mosk); 1991 Jan 12; 25(2):358-67. PubMed ID: 1881393 [Abstract] [Full Text] [Related]
30. Comparative efficiency of forming m4T.G versus m4T.A base pairs at a unique site by use of Escherichia coli DNA polymerase I (Klenow fragment) and Drosophila melanogaster polymerase alpha-primase complex. Dosanjh MK, Essigmann JM, Goodman MF, Singer B. Biochemistry; 1990 May 15; 29(19):4698-703. PubMed ID: 2115381 [Abstract] [Full Text] [Related]
34. Mechanistic insights into replication across from bulky DNA adducts: a mutant polymerase I allows an N-acetyl-2-aminofluorene adduct to be accommodated during DNA synthesis. Lone S, Romano LJ. Biochemistry; 2003 Apr 08; 42(13):3826-34. PubMed ID: 12667073 [Abstract] [Full Text] [Related]
35. Site-directed mutagenesis of Escherichia coli ornithine transcarbamoylase: role of arginine-57 in substrate binding and catalysis. Kuo LC, Miller AW, Lee S, Kozuma C. Biochemistry; 1988 Nov 29; 27(24):8823-32. PubMed ID: 3072022 [Abstract] [Full Text] [Related]
38. The nucleotide analog 2-aminopurine as a spectroscopic probe of nucleotide incorporation by the Klenow fragment of Escherichia coli polymerase I and bacteriophage T4 DNA polymerase. Frey MW, Sowers LC, Millar DP, Benkovic SJ. Biochemistry; 1995 Jul 18; 34(28):9185-92. PubMed ID: 7619819 [Abstract] [Full Text] [Related]
39. Novel blunt-end addition reactions catalyzed by DNA polymerase I of Escherichia coli. Clark JM, Joyce CM, Beardsley GP. J Mol Biol; 1987 Nov 05; 198(1):123-7. PubMed ID: 3323527 [Abstract] [Full Text] [Related]
40. Family A and family B DNA polymerases are structurally related: evolutionary implications. Zhu W, Ito J. Nucleic Acids Res; 1994 Dec 11; 22(24):5177-83. PubMed ID: 7816603 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]