These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
150 related items for PubMed ID: 8508807
41. Kinetic analysis of the unique error signature of human DNA polymerase ν. Arana ME, Potapova O, Kunkel TA, Joyce CM. Biochemistry; 2011 Nov 22; 50(46):10126-35. PubMed ID: 22008035 [Abstract] [Full Text] [Related]
42. A carboxylate triad is essential for the polymerase activity of Escherichia coli DNA polymerase I (Klenow fragment). Presence of two functional triads at the catalytic center. Gangurde R, Kaushik N, Singh K, Modak MJ. J Biol Chem; 2000 Jun 30; 275(26):19685-92. PubMed ID: 10779513 [Abstract] [Full Text] [Related]
43. DNA polymerase photoprobe 2-[(4-azidophenacyl)thio]-2'-deoxyadenosine 5'-triphosphate labels an Escherichia coli DNA polymerase I Klenow fragment substrate binding site. Moore BM, Jalluri RK, Doughty MB. Biochemistry; 1996 Sep 10; 35(36):11642-51. PubMed ID: 8794744 [Abstract] [Full Text] [Related]
44. Suppression of ColE1 high-copy-number mutants by mutations in the polA gene of Escherichia coli. Yang YL, Polisky B. J Bacteriol; 1993 Jan 10; 175(2):428-37. PubMed ID: 8419292 [Abstract] [Full Text] [Related]
45. A domain of the Klenow fragment of Escherichia coli DNA polymerase I has polymerase but no exonuclease activity. Freemont PS, Ollis DL, Steitz TA, Joyce CM. Proteins; 1986 Sep 10; 1(1):66-73. PubMed ID: 3329725 [Abstract] [Full Text] [Related]
46. Structural and catalytic insights into HoLaMa, a derivative of Klenow DNA polymerase lacking the proofreading domain. Kovermann M, Stefan A, Castaldo A, Caramia S, Hochkoeppler A. PLoS One; 2019 Sep 10; 14(4):e0215411. PubMed ID: 30970012 [Abstract] [Full Text] [Related]
47. Effect of reaction pH on the fidelity and processivity of exonuclease-deficient Klenow polymerase. Eckert KA, Kunkel TA. J Biol Chem; 1993 Jun 25; 268(18):13462-71. PubMed ID: 8390464 [Abstract] [Full Text] [Related]
49. [Effectiveness of substituting E. coli DNA-polymerase for DNA-polymerase A in oligonucleotide-directed mutagenesis]. Petrenko VA, Kipriianov SM, Semenova LN, Boldyrev AN. Bioorg Khim; 1987 Mar 25; 13(3):344-9. PubMed ID: 3297072 [Abstract] [Full Text] [Related]
51. DNA polymerase beta: analysis of the contributions of tyrosine-271 and asparagine-279 to substrate specificity and fidelity of DNA replication by pre-steady-state kinetics. Kraynov VS, Werneburg BG, Zhong X, Lee H, Ahn J, Tsai MD. Biochem J; 1997 Apr 01; 323 ( Pt 1)(Pt 1):103-11. PubMed ID: 9173867 [Abstract] [Full Text] [Related]
52. Base sequence dependence of in vitro translesional DNA replication past a bulky lesion catalyzed by the exo- Klenow fragment of Pol I. Zhuang P, Kolbanovskiy A, Amin S, Geacintov NE. Biochemistry; 2001 Jun 05; 40(22):6660-9. PubMed ID: 11380261 [Abstract] [Full Text] [Related]
54. Effects of mutations on the partitioning of DNA substrates between the polymerase and 3'-5' exonuclease sites of DNA polymerase I (Klenow fragment). Lam WC, Van der Schans EJ, Joyce CM, Millar DP. Biochemistry; 1998 Feb 10; 37(6):1513-22. PubMed ID: 9484221 [Abstract] [Full Text] [Related]
55. Steady-state and pre-steady-state kinetic analysis of dNTP insertion opposite 8-oxo-7,8-dihydroguanine by Escherichia coli polymerases I exo- and II exo-. Lowe LG, Guengerich FP. Biochemistry; 1996 Jul 30; 35(30):9840-9. PubMed ID: 8703958 [Abstract] [Full Text] [Related]
56. Random mutagenesis of Thermus aquaticus DNA polymerase I: concordance of immutable sites in vivo with the crystal structure. Suzuki M, Baskin D, Hood L, Loeb LA. Proc Natl Acad Sci U S A; 1996 Sep 03; 93(18):9670-5. PubMed ID: 8790389 [Abstract] [Full Text] [Related]
57. cis-syn thymine dimers are not absolute blocks to replication by DNA polymerase I of Escherichia coli in vitro. Taylor JS, O'Day CL. Biochemistry; 1990 Feb 13; 29(6):1624-32. PubMed ID: 2185842 [Abstract] [Full Text] [Related]
58. A single side chain prevents Escherichia coli DNA polymerase I (Klenow fragment) from incorporating ribonucleotides. Astatke M, Ng K, Grindley ND, Joyce CM. Proc Natl Acad Sci U S A; 1998 Mar 31; 95(7):3402-7. PubMed ID: 9520378 [Abstract] [Full Text] [Related]
59. [Features of interaction of Escherichia coli DNA polymerase I and its Klenow fragment with dTTP gamma-p-azidoanilide]. Kudriashova NV, Shamanina MIu, Godovikova TS, Anan'ko EA, Akhmadieva FF, Romashchenko AG. Biokhimiia; 1993 Feb 31; 58(2):224-33. PubMed ID: 8485214 [Abstract] [Full Text] [Related]
60. The conserved active site motif A of Escherichia coli DNA polymerase I is highly mutable. Shinkai A, Patel PH, Loeb LA. J Biol Chem; 2001 Jun 01; 276(22):18836-42. PubMed ID: 11278911 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]