These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
339 related items for PubMed ID: 8509833
1. Wipe and flexion reflexes of the frog. I. Kinematics and EMG patterns. Schotland JL, Rymer WZ. J Neurophysiol; 1993 May; 69(5):1725-35. PubMed ID: 8509833 [Abstract] [Full Text] [Related]
2. Wipe and flexion reflexes of the frog. II. Response to perturbations. Schotland JL, Rymer WZ. J Neurophysiol; 1993 May; 69(5):1736-48. PubMed ID: 8509834 [Abstract] [Full Text] [Related]
3. Wipe and flexion withdrawal reflexes display different EMG patterns prior to movement onset in the spinalized frog. Schotland JL, Lee WA, Rymer WZ. Exp Brain Res; 1989 May; 78(3):649-53. PubMed ID: 2612608 [Abstract] [Full Text] [Related]
4. Kinematics and control of frog hindlimb movements. Ostry DJ, Feldman AG, Flanagan JR. J Neurophysiol; 1991 Mar; 65(3):547-62. PubMed ID: 2051194 [Abstract] [Full Text] [Related]
5. Afferent roles in hindlimb wipe-reflex trajectories: free-limb kinematics and motor patterns. Kargo WJ, Giszter SF. J Neurophysiol; 2000 Mar; 83(3):1480-501. PubMed ID: 10712474 [Abstract] [Full Text] [Related]
6. Contributions to the understanding of gait control. Simonsen EB. Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597 [Abstract] [Full Text] [Related]
7. Three-dimensional kinematic analysis of frog hindlimb movement in reflex wiping. Sergio LE, Ostry DJ. Exp Brain Res; 1993 Apr; 94(1):53-64. PubMed ID: 8335075 [Abstract] [Full Text] [Related]
11. Neural regulation of rhythmic arm and leg movement is conserved across human locomotor tasks. Zehr EP, Balter JE, Ferris DP, Hundza SR, Loadman PM, Stoloff RH. J Physiol; 2007 Jul 01; 582(Pt 1):209-27. PubMed ID: 17463036 [Abstract] [Full Text] [Related]
12. Segmental reflexes and ankle joint stiffness during co-contraction of antagonistic ankle muscles in man. Nielsen J, Sinkjaer T, Toft E, Kagamihara Y. Exp Brain Res; 1994 Jul 01; 102(2):350-8. PubMed ID: 7705512 [Abstract] [Full Text] [Related]
13. Differences in coding provided by proprioceptive and vestibular sensory signals may contribute to lateral instability in vestibular loss subjects. Allum JH, Oude Nijhuis LB, Carpenter MG. Exp Brain Res; 2008 Jan 01; 184(3):391-410. PubMed ID: 17849108 [Abstract] [Full Text] [Related]
14. Broad directional tuning in spinal projections to the cerebellum. Bosco G, Poppele RE. J Neurophysiol; 1993 Aug 01; 70(2):863-6. PubMed ID: 8410178 [Abstract] [Full Text] [Related]
15. Afferent mechanisms for the reflex response to imposed ankle movement in chronic spinal cord injury. Schmit BD, Benz EN, Rymer WZ. Exp Brain Res; 2002 Jul 01; 145(1):40-9. PubMed ID: 12070743 [Abstract] [Full Text] [Related]
16. Hip proprioceptors preferentially modulate reflexes of the leg in human spinal cord injury. Onushko T, Hyngstrom A, Schmit BD. J Neurophysiol; 2013 Jul 01; 110(2):297-306. PubMed ID: 23615544 [Abstract] [Full Text] [Related]
18. Contribution of muscle afferents to prolonged flexion withdrawal reflexes in human spinal cord injury. Hornby TG, Tysseling-Mattiace VM, Benz EN, Schmit BD. J Neurophysiol; 2004 Dec 01; 92(6):3375-84. PubMed ID: 15254071 [Abstract] [Full Text] [Related]
19. Forms of forward quadrupedal locomotion. III. A comparison of posture, hindlimb kinematics, and motor patterns for downslope and level walking. Smith JL, Carlson-Kuhta P, Trank TV. J Neurophysiol; 1998 Apr 01; 79(4):1702-16. PubMed ID: 9535940 [Abstract] [Full Text] [Related]
20. Modulation of transmission in flexion reflex pathways by knee joint afferent discharge in the decerebrate cat. Baxendale RH, Ferrell WR. Brain Res; 1980 Dec 08; 202(2):497-500. PubMed ID: 6254615 [Abstract] [Full Text] [Related] Page: [Next] [New Search]