These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
121 related items for PubMed ID: 8511964
21. Global analysis of nutrient control of gene expression in Saccharomyces cerevisiae during growth and starvation. Wu J, Zhang N, Hayes A, Panoutsopoulou K, Oliver SG. Proc Natl Acad Sci U S A; 2004 Mar 02; 101(9):3148-53. PubMed ID: 14973188 [Abstract] [Full Text] [Related]
22. Nitrogen GATA factors participate in transcriptional regulation of vacuolar protease genes in Saccharomyces cerevisiae. Coffman JA, Cooper TG. J Bacteriol; 1997 Sep 02; 179(17):5609-13. PubMed ID: 9287023 [Abstract] [Full Text] [Related]
23. The role of glucose and aminoacid starvation in the sensitivity of protein and RNA synthesis to cycloheximide and erythromycin in the yeast Saccharomyces cerevisiae. Tassi F, Ferrero I, Donnini C, Marmiroli N. Microbiologica; 1983 Jan 02; 6(1):9-18. PubMed ID: 6341782 [Abstract] [Full Text] [Related]
24. Carboxypeptidase yscS: gene structure and function of the vacuolar enzyme. Spormann DO, Heim J, Wolf DH. Eur J Biochem; 1991 Apr 23; 197(2):399-405. PubMed ID: 2026161 [Abstract] [Full Text] [Related]
25. UBI4, the polyubiquitin gene of Saccharomyces cerevisiae, is a heat shock gene that is also subject to catabolite derepression control. Watt R, Piper PW. Mol Gen Genet; 1997 Jan 27; 253(4):439-47. PubMed ID: 9037103 [Abstract] [Full Text] [Related]
26. Activities of the enzymes of the Ehrlich pathway and formation of branched-chain alcohols in Saccharomyces cerevisiae and Candida utilis grown in continuous culture on valine or ammonium as sole nitrogen source. Derrick S, Large PJ. J Gen Microbiol; 1993 Nov 27; 139(11):2783-92. PubMed ID: 8277258 [Abstract] [Full Text] [Related]
27. Carbon and energy uncoupling associated with cell cycle arrest of cdc mutants of Saccharomyces cerevisiae may be linked to glucose-induced catabolite repression. Mónaco ME, Valdecantos PA, Aon MA. Exp Cell Res; 1995 Mar 27; 217(1):52-6. PubMed ID: 7867720 [Abstract] [Full Text] [Related]
28. Nutrient-induced activation of trehalase in nutrient-starved cells of the yeast Saccharomyces cerevisiae: cAMP is not involved as second messenger. Hirimburegama K, Durnez P, Keleman J, Oris E, Vergauwen R, Mergelsberg H, Thevelein JM. J Gen Microbiol; 1992 Oct 27; 138(10):2035-43. PubMed ID: 1336029 [Abstract] [Full Text] [Related]
29. Nitrogen starvation induces expression of Lg-FLO1 and flocculation in bottom-fermenting yeast. Ogata T. Yeast; 2012 Nov 27; 29(11):487-94. PubMed ID: 23065862 [Abstract] [Full Text] [Related]
30. Constitutive glucose-induced activation of the Ras-cAMP pathway and aberrant stationary-phase entry on a glucose-containing medium in the Saccharomyces cerevisiae glucose-repression mutant hex2. Dumortier F, Argüelles JC, Thevelein JM. Microbiology (Reading); 1995 Jul 27; 141 ( Pt 7)():1559-66. PubMed ID: 7551024 [Abstract] [Full Text] [Related]
31. RAS2/PKA pathway activity is involved in the nitrogen regulation of L-leucine uptake in Saccharomyces cerevisiae. Sáenz DA, Chianelli MS, Stella CA, Mattoon JR, Ramos EH. Int J Biochem Cell Biol; 1997 Mar 27; 29(3):505-12. PubMed ID: 9202429 [Abstract] [Full Text] [Related]
32. Regulation of the yeast vacuolar aminopeptidase Y gene (APY1) expression. Herrera-Camacho I, Suárez-Rendueles P. FEMS Microbiol Lett; 1996 Jun 01; 139(2-3):127-32. PubMed ID: 8674980 [Abstract] [Full Text] [Related]
33. Short- and long-term dynamic responses of the metabolic network and gene expression in yeast to a transient change in the nutrient environment. Dikicioglu D, Dunn WB, Kell DB, Kirdar B, Oliver SG. Mol Biosyst; 2012 Jun 01; 8(6):1760-74. PubMed ID: 22491778 [Abstract] [Full Text] [Related]
34. Multiple regulatory mechanisms control the expression of the RAS1 and RAS2 genes of Saccharomyces cerevisiae. Breviario D, Hinnebusch AG, Dhar R. EMBO J; 1988 Jun 01; 7(6):1805-13. PubMed ID: 3049076 [Abstract] [Full Text] [Related]
35. Absence of derepression of amino acids transport in Candida. Verma RS, Prasad R. Biochem Int; 1983 Dec 01; 7(6):707-17. PubMed ID: 6385985 [Abstract] [Full Text] [Related]
36. Nitrogen source and growth stage of Candida albicans influence expression level of vacuolar aspartic protease Apr1p and carboxypeptidase Cpy1p. Bauerová V, Pichová I, Hrušková-Heidingsfeldová O. Can J Microbiol; 2012 May 01; 58(5):678-81. PubMed ID: 22502766 [Abstract] [Full Text] [Related]
37. Carboxypeptidase S- and carboxypeptidase Y-deficient mutants of Saccharomyces cerevisiae. Wolf DH, Ehmann C. J Bacteriol; 1981 Aug 01; 147(2):418-26. PubMed ID: 7021530 [Abstract] [Full Text] [Related]
38. [Carbon-nitrogen regulation of a laccase-producing mutant of Phanerochaete chrysosporium resisting carbon and nitrogen nutritional repression]. Qiu A, Li W, Fan X, Meng Y, Zheng Y. Wei Sheng Wu Xue Bao; 2012 Mar 04; 52(3):334-44. PubMed ID: 22712404 [Abstract] [Full Text] [Related]
39. Nitrogen catabolite repression in Saccharomyces cerevisiae. Hofman-Bang J. Mol Biotechnol; 1999 Aug 04; 12(1):35-73. PubMed ID: 10554772 [Abstract] [Full Text] [Related]
40. Arginase activity is a useful marker of nitrogen limitation during alcoholic fermentations. Carrasco P, Pérez-Ortín JE, del Olmo Ml. Syst Appl Microbiol; 2003 Sep 04; 26(3):471-9. PubMed ID: 14529191 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]