These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


200 related items for PubMed ID: 8518283

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. A hydrogen bond network in the active site of Anabaena ferredoxin-NADP(+) reductase modulates its catalytic efficiency.
    Sánchez-Azqueta A, Herguedas B, Hurtado-Guerrero R, Hervás M, Navarro JA, Martínez-Júlvez M, Medina M.
    Biochim Biophys Acta; 2014 Feb; 1837(2):251-63. PubMed ID: 24200908
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. High-resolution studies of hydride transfer in the ferredoxin:NADP+ reductase superfamily.
    Kean KM, Carpenter RA, Pandini V, Zanetti G, Hall AR, Faber R, Aliverti A, Karplus PA.
    FEBS J; 2017 Oct; 284(19):3302-3319. PubMed ID: 28783258
    [Abstract] [Full Text] [Related]

  • 8. External loops at the ferredoxin-NADP(+) reductase protein-partner binding cavity contribute to substrates allocation.
    Sánchez-Azqueta A, Martínez-Júlvez M, Hervás M, Navarro JA, Medina M.
    Biochim Biophys Acta; 2014 Feb; 1837(2):296-305. PubMed ID: 24321506
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Lys75 of Anabaena ferredoxin-NADP+ reductase is a critical residue for binding ferredoxin and flavodoxin during electron transfer.
    Martínez-Júlvez M, Medina M, Hurley JK, Hafezi R, Brodie TB, Tollin G, Gómez-Moreno C.
    Biochemistry; 1998 Sep 29; 37(39):13604-13. PubMed ID: 9753447
    [Abstract] [Full Text] [Related]

  • 11. Porcine recombinant dihydropyrimidine dehydrogenase: comparison of the spectroscopic and catalytic properties of the wild-type and C671A mutant enzymes.
    Rosenbaum K, Jahnke K, Curti B, Hagen WR, Schnackerz KD, Vanoni MA.
    Biochemistry; 1998 Dec 15; 37(50):17598-609. PubMed ID: 9860876
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Mutations of Glu92 in ferredoxin I from spinach leaves produce proteins fully functional in electron transfer but less efficient in supporting NADP+ photoreduction.
    Piubelli L, Aliverti A, Bellintani F, Zanetti G.
    Eur J Biochem; 1996 Mar 01; 236(2):465-9. PubMed ID: 8612617
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Site-directed mutagenesis of the redox-active cysteines of Trypanosoma cruzi trypanothione reductase.
    Borges A, Cunningham ML, Tovar J, Fairlamb AH.
    Eur J Biochem; 1995 Mar 15; 228(3):745-52. PubMed ID: 7737173
    [Abstract] [Full Text] [Related]

  • 17. Kinetic and structural insight into a role of the re-face Tyr328 residue of the homodimer type ferredoxin-NADP+ oxidoreductase from Rhodopseudomonas palustris in the reaction with NADP+/NADPH.
    Seo D, Muraki N, Kurisu G.
    Biochim Biophys Acta Bioenerg; 2020 Mar 01; 1861(3):148140. PubMed ID: 31838096
    [Abstract] [Full Text] [Related]

  • 18. Probing the role of lysine 116 and lysine 244 in the spinach ferredoxin-NADP+ reductase by site-directed mutagenesis.
    Aliverti A, Lübberstedt T, Zanetti G, Herrmann RG, Curti B.
    J Biol Chem; 1991 Sep 25; 266(27):17760-3. PubMed ID: 1917920
    [Abstract] [Full Text] [Related]

  • 19. Kinetic, spectroscopic and thermodynamic characterization of the Mycobacterium tuberculosis adrenodoxin reductase homologue FprA.
    McLean KJ, Scrutton NS, Munro AW.
    Biochem J; 2003 Jun 01; 372(Pt 2):317-27. PubMed ID: 12614197
    [Abstract] [Full Text] [Related]

  • 20. Aromatic substitution of the FAD-shielding tryptophan reveals its differential role in regulating electron flux in methionine synthase reductase and cytochrome P450 reductase.
    Meints CE, Simtchouk S, Wolthers KR.
    FEBS J; 2013 Mar 01; 280(6):1460-74. PubMed ID: 23332101
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.