These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
200 related items for PubMed ID: 8518283
21. Interaction of positively charged amino acid residues of recombinant, cyanobacterial ferredoxin:NADP+ reductase with ferredoxin probed by site directed mutagenesis. Schmitz S, Martínez-Júlvez M, Gómez-Moreno C, Böhme H. Biochim Biophys Acta; 1998 Jan 27; 1363(1):85-93. PubMed ID: 9511808 [Abstract] [Full Text] [Related]
22. Toxoplasma gondii ferredoxin-NADP+ reductase: Role of ionic interactions in stabilization of native conformation and structural cooperativity. Singh K, Bhakuni V. Proteins; 2008 Jun 27; 71(4):1879-88. PubMed ID: 18175327 [Abstract] [Full Text] [Related]
23. Open questions in ferredoxin-NADP+ reductase catalytic mechanism. Carrillo N, Ceccarelli EA. Eur J Biochem; 2003 May 27; 270(9):1900-15. PubMed ID: 12709048 [Abstract] [Full Text] [Related]
24. Engineering and characterization of a NADPH-utilizing cytochrome b5 reductase. Marohnic CC, Bewley MC, Barber MJ. Biochemistry; 2003 Sep 30; 42(38):11170-82. PubMed ID: 14503867 [Abstract] [Full Text] [Related]
25. X-ray structure of the ferredoxin:NADP+ reductase from the cyanobacterium Anabaena PCC 7119 at 1.8 A resolution, and crystallographic studies of NADP+ binding at 2.25 A resolution. Serre L, Vellieux FM, Medina M, Gomez-Moreno C, Fontecilla-Camps JC, Frey M. J Mol Biol; 1996 Oct 18; 263(1):20-39. PubMed ID: 8890910 [Abstract] [Full Text] [Related]
26. Trp-676 facilitates nicotinamide coenzyme exchange in the reductive half-reaction of human cytochrome P450 reductase: properties of the soluble W676H and W676A mutant reductases. Gutierrez A, Doehr O, Paine M, Wolf CR, Scrutton NS, Roberts GC. Biochemistry; 2000 Dec 26; 39(51):15990-9. PubMed ID: 11123926 [Abstract] [Full Text] [Related]
27. Crystal structures of Leptospira interrogans FAD-containing ferredoxin-NADP+ reductase and its complex with NADP+. Nascimento AS, Catalano-Dupuy DL, Bernardes A, Neto Mde O, Santos MA, Ceccarelli EA, Polikarpov I. BMC Struct Biol; 2007 Oct 24; 7():69. PubMed ID: 17958910 [Abstract] [Full Text] [Related]
28. Arabidopsis FNRL protein is an NADPH-dependent chloroplast oxidoreductase resembling bacterial ferredoxin-NADP+ reductases. Koskela MM, Dahlström KM, Goñi G, Lehtimäki N, Nurmi M, Velazquez-Campoy A, Hanke G, Bölter B, Salminen TA, Medina M, Mulo P. Physiol Plant; 2018 Feb 24; 162(2):177-190. PubMed ID: 28833218 [Abstract] [Full Text] [Related]
29. Competition between C-terminal tyrosine and nicotinamide modulates pyridine nucleotide affinity and specificity in plant ferredoxin-NADP(+) reductase. Piubelli L, Aliverti A, Arakaki AK, Carrillo N, Ceccarelli EA, Karplus PA, Zanetti G. J Biol Chem; 2000 Apr 07; 275(14):10472-6. PubMed ID: 10744737 [Abstract] [Full Text] [Related]
30. A three-domain iron-sulfur flavoprotein obtained through gene fusion of ferredoxin and ferredoxin-NADP+ reductase from spinach leaves. Aliverti A, Zanetti G. Biochemistry; 1997 Dec 02; 36(48):14771-7. PubMed ID: 9398197 [Abstract] [Full Text] [Related]
31. Role of Arg100 and Arg264 from Anabaena PCC 7119 ferredoxin-NADP+ reductase for optimal NADP+ binding and electron transfer. Martínez-Júlvez M, Hermoso J, Hurley JK, Mayoral T, Sanz-Aparicio J, Tollin G, Gómez-Moreno C, Medina M. Biochemistry; 1998 Dec 22; 37(51):17680-91. PubMed ID: 9922134 [Abstract] [Full Text] [Related]
32. A single in vivo-selected point mutation in the active center of Toxoplasma gondii ferredoxin-NADP+ reductase leads to an inactive enzyme with greatly enhanced affinity for ferredoxin. Thomsen-Zieger N, Pandini V, Caprini G, Aliverti A, Cramer J, Selzer PM, Zanetti G, Seeber F. FEBS Lett; 2004 Oct 22; 576(3):375-80. PubMed ID: 15498566 [Abstract] [Full Text] [Related]
33. Structure-function relationships in Anabaena ferredoxin: correlations between X-ray crystal structures, reduction potentials, and rate constants of electron transfer to ferredoxin:NADP+ reductase for site-specific ferredoxin mutants. Hurley JK, Weber-Main AM, Stankovich MT, Benning MM, Thoden JB, Vanhooke JL, Holden HM, Chae YK, Xia B, Cheng H, Markley JL, Martinez-Júlvez M, Gómez-Moreno C, Schmeits JL, Tollin G. Biochemistry; 1997 Sep 16; 36(37):11100-17. PubMed ID: 9287153 [Abstract] [Full Text] [Related]
34. Probing the NADPH-binding site of Escherichia coli flavodoxin oxidoreductase. Leadbeater C, McIver L, Campopiano DJ, Webster SP, Baxter RL, Kelly SM, Price NC, Lysek DA, Noble MA, Chapman SK, Munro AW. Biochem J; 2000 Dec 01; 352 Pt 2(Pt 2):257-66. PubMed ID: 11085917 [Abstract] [Full Text] [Related]
35. Atomic structure of ferredoxin-NADP+ reductase: prototype for a structurally novel flavoenzyme family. Karplus PA, Daniels MJ, Herriott JR. Science; 1991 Jan 04; 251(4989):60-6. PubMed ID: 1986412 [Abstract] [Full Text] [Related]
36. Structural prototypes for an extended family of flavoprotein reductases: comparison of phthalate dioxygenase reductase with ferredoxin reductase and ferredoxin. Correll CC, Ludwig ML, Bruns CM, Karplus PA. Protein Sci; 1993 Dec 04; 2(12):2112-33. PubMed ID: 8298460 [Abstract] [Full Text] [Related]
37. Spectroscopic and kinetic properties of a recombinant form of the flavin domain of spinach NADH: nitrate reductase. Quinn GB, Trimboli AJ, Prosser IM, Barber MJ. Arch Biochem Biophys; 1996 Mar 01; 327(1):151-60. PubMed ID: 8615685 [Abstract] [Full Text] [Related]
38. Affinity labeling of spinach ferredoxin-NADP+ oxidoreductase with periodate-oxidized NADP+. Chan RL, Carrillo N. Arch Biochem Biophys; 1984 Feb 15; 229(1):340-7. PubMed ID: 6703700 [Abstract] [Full Text] [Related]
39. One-step purification of plant ferredoxin-NADP+ oxidoreductase expressed in Escherichia coli as fusion with glutathione S-transferase. Serra EC, Carrillo N, Krapp AR, Ceccarelli EA. Protein Expr Purif; 1993 Dec 15; 4(6):539-46. PubMed ID: 8286951 [Abstract] [Full Text] [Related]
40. Role of cysteine 337 and cysteine 340 in flavoprotein that functions as NADH oxidase from Amphibacillus xylanus studied by site-directed mutagenesis. Ohnishi K, Niimura Y, Hidaka M, Masaki H, Suzuki H, Uozumi T, Nishino T. J Biol Chem; 1995 Mar 17; 270(11):5812-7. PubMed ID: 7726998 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]