These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


67 related items for PubMed ID: 8519067

  • 1. Microtubule rearrangement and bending during assembly of large curved microtubule bundles in mouse cochlear epithelial cells.
    Tucker JB, Paton CC, Henderson CG, Mogensen MM.
    Cell Motil Cytoskeleton; 1993; 25(1):49-58. PubMed ID: 8519067
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Focal expression of A-CAM on pillar cells during formation of Corti's tunnel in gerbil cochlea.
    Nakazawa K, Spicer SS, Schulte BA.
    Anat Rec; 1996 Jul; 245(3):577-80. PubMed ID: 8800416
    [Abstract] [Full Text] [Related]

  • 5. Formation of two microtubule-nucleating sites which perform differently during centrosomal reorganization in a mouse cochlear epithelial cell.
    Tucker JB, Mogensen MM, Paton CC, Mackie JB, Henderson CG, Leckie LM.
    J Cell Sci; 1995 Apr; 108 ( Pt 4)():1333-45. PubMed ID: 7615656
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Postnatal development of the hamster cochlea. I. Growth of hair cells and the organ of Corti.
    Kaltenbach JA, Falzarano PR.
    J Comp Neurol; 1994 Feb 01; 340(1):87-97. PubMed ID: 8176004
    [Abstract] [Full Text] [Related]

  • 8. Postnatal maturation of the organ of Corti in gerbils: morphology and physiological responses.
    Souter M, Nevill G, Forge A.
    J Comp Neurol; 1997 Oct 06; 386(4):635-51. PubMed ID: 9378857
    [Abstract] [Full Text] [Related]

  • 9. Cytological changes related to maturation of the organ of Corti and opening of Corti's tunnel.
    Ito M, Spicer SS, Schulte BA.
    Hear Res; 1995 Aug 06; 88(1-2):107-23. PubMed ID: 8575987
    [Abstract] [Full Text] [Related]

  • 10. Early identification of inner pillar cells during rat cochlear development.
    Thelen N, Breuskin I, Malgrange B, Thiry M.
    Cell Tissue Res; 2009 Jul 06; 337(1):1-14. PubMed ID: 19444473
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Mechanics of microtubule bundles in pillar cells from the inner ear.
    Tolomeo JA, Holley MC.
    Biophys J; 1997 Oct 06; 73(4):2241-7. PubMed ID: 9336220
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Orientation, assembly, and stability of microtubule bundles induced by a fragment of tau protein.
    Brandt R, Lee G.
    Cell Motil Cytoskeleton; 1994 Oct 06; 28(2):143-54. PubMed ID: 8087873
    [Abstract] [Full Text] [Related]

  • 16. Sprouty2, a mouse deafness gene, regulates cell fate decisions in the auditory sensory epithelium by antagonizing FGF signaling.
    Shim K, Minowada G, Coling DE, Martin GR.
    Dev Cell; 2005 Apr 06; 8(4):553-64. PubMed ID: 15809037
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Microtubule polarity in Sertoli cells: a model for microtubule-based spermatid transport.
    Redenbach DM, Vogl AW.
    Eur J Cell Biol; 1991 Apr 06; 54(2):277-90. PubMed ID: 1879439
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 4.