These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


97 related items for PubMed ID: 8523446

  • 1. Tetradecylthioacetic acid reduces the amount of lipid droplets, induces megamitochondria formation and increases the fatty acid oxidation in rat heart.
    Hexeberg S, Frøyland L, Asiedu DK, Demoz A, Berge RK.
    J Mol Cell Cardiol; 1995 Sep; 27(9):1851-7. PubMed ID: 8523446
    [Abstract] [Full Text] [Related]

  • 2. Proliferation of mitochondria and gene expression of carnitine palmitoyltransferase and fatty acyl-CoA oxidase in rat skeletal muscle, heart and liver by hypolipidemic fatty acids.
    Totland GK, Madsen L, Klementsen B, Vaagenes H, Kryvi H, Frøyland L, Hexeberg S, Berge RK.
    Biol Cell; 2000 Aug; 92(5):317-29. PubMed ID: 11071041
    [Abstract] [Full Text] [Related]

  • 3. Long-term effect of tetradecylthioacetic acid: a study on plasma lipid profile and fatty acid composition and oxidation in different rat organs.
    Asiedu DK, Frøyland L, Vaagenes H, Lie O, Demoz A, Berge RK.
    Biochim Biophys Acta; 1996 Apr 19; 1300(2):86-96. PubMed ID: 8652642
    [Abstract] [Full Text] [Related]

  • 4. Docosahexaenoic and eicosapentaenoic acids are differently metabolized in rat liver during mitochondria and peroxisome proliferation.
    Madsen L, Frøyland L, Dyrøy E, Helland K, Berge RK.
    J Lipid Res; 1998 Mar 19; 39(3):583-93. PubMed ID: 9548590
    [Abstract] [Full Text] [Related]

  • 5. Methylated eicosapentaenoic acid and tetradecylthioacetic acid: effects on fatty acid metabolism.
    Vaagenes H, Madsen L, Dyrøy E, Elholm M, Stray-Pedersen A, Frøyland L, Lie O, Berge RK.
    Biochem Pharmacol; 1999 Oct 01; 58(7):1133-43. PubMed ID: 10484071
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Early modulation of genes encoding peroxisomal and mitochondrial beta-oxidation enzymes by 3-thia fatty acids.
    Vaagenes H, Madsen L, Asiedu DK, Lillehaug JR, Berge RK.
    Biochem Pharmacol; 1998 Dec 15; 56(12):1571-82. PubMed ID: 9973177
    [Abstract] [Full Text] [Related]

  • 12. Comparative effects of oxygen and sulfur-substituted fatty acids on serum lipids and mitochondrial and peroxisomal fatty acid oxidation in rat.
    Skorve J, Asiedu D, Solbakken M, Gjestdal J, Songstad J, Berge RK.
    Biochem Pharmacol; 1992 Feb 18; 43(4):815-22. PubMed ID: 1540235
    [Abstract] [Full Text] [Related]

  • 13. Acylcarnitine formation and fatty acid oxidation in hepatocytes from rats treated with tetradecylthioacetic acid (a 3-thia fatty acid).
    Skrede S, Bremer J.
    Biochim Biophys Acta; 1993 Apr 07; 1167(2):189-96. PubMed ID: 8466948
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Stimulation of fatty acid oxidation by a 3-thia fatty acid reduces triacylglycerol secretion in cultured rat hepatocytes.
    Skrede S, Bremer J, Berge RK, Rustan AC.
    J Lipid Res; 1994 Aug 07; 35(8):1395-404. PubMed ID: 7989864
    [Abstract] [Full Text] [Related]

  • 16. Eicosapentaenoic and docosahexaenoic acid affect mitochondrial and peroxisomal fatty acid oxidation in relation to substrate preference.
    Madsen L, Rustan AC, Vaagenes H, Berge K, Dyrøy E, Berge RK.
    Lipids; 1999 Sep 07; 34(9):951-63. PubMed ID: 10574660
    [Abstract] [Full Text] [Related]

  • 17. In contrast with docosahexaenoic acid, eicosapentaenoic acid and hypolipidaemic derivatives decrease hepatic synthesis and secretion of triacylglycerol by decreased diacylglycerol acyltransferase activity and stimulation of fatty acid oxidation.
    Berge RK, Madsen L, Vaagenes H, Tronstad KJ, Göttlicher M, Rustan AC.
    Biochem J; 1999 Oct 01; 343 Pt 1(Pt 1):191-7. PubMed ID: 10493929
    [Abstract] [Full Text] [Related]

  • 18. Fatty acid incubation of myotubes from humans with type 2 diabetes leads to enhanced release of beta-oxidation products because of impaired fatty acid oxidation: effects of tetradecylthioacetic acid and eicosapentaenoic acid.
    Wensaas AJ, Rustan AC, Just M, Berge RK, Drevon CA, Gaster M.
    Diabetes; 2009 Mar 01; 58(3):527-35. PubMed ID: 19066312
    [Abstract] [Full Text] [Related]

  • 19. Effects of chain length and sulphur position of thia fatty acids on their incorporation into phospholipids in 7800 C1 hepatoma cells and isolated rat hepatocytes, and their effects on fatty acid composition of phospholipids.
    Wu P, Grav HJ, Horn R, Bremer J.
    Biochem Pharmacol; 1996 Mar 22; 51(6):751-8. PubMed ID: 8602870
    [Abstract] [Full Text] [Related]

  • 20. Early effects on mitochondrial and peroxisomal beta-oxidation by the hypolipidemic 3-thia-fatty acids in rat livers.
    Asiedu DK, Skorve J, Willumsen N, Demoz A, Berge RK.
    Biochim Biophys Acta; 1993 Feb 10; 1166(1):73-6. PubMed ID: 8431494
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 5.