These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


398 related items for PubMed ID: 8527798

  • 1. Cot-1 banding of human chromosomes using fluorescence in situ hybridization with Cy3 labeling.
    Wang Y, Minoshima S, Shimizu N.
    Jpn J Hum Genet; 1995 Sep; 40(3):243-52. PubMed ID: 8527798
    [Abstract] [Full Text] [Related]

  • 2. Rapid fluorescence in situ hybridization with repetitive DNA probes: quantification by digital image analysis.
    Celeda D, Aldinger K, Haar FM, Hausmann M, Durm M, Ludwig H, Cremer C.
    Cytometry; 1994 Sep 01; 17(1):13-25. PubMed ID: 8001456
    [Abstract] [Full Text] [Related]

  • 3. Polymerase chain reaction-based suppression of repetitive sequences in whole chromosome painting probes for FISH.
    Dugan LC, Pattee MS, Williams J, Eklund M, Sorensen K, Bedford JS, Christian AT.
    Chromosome Res; 2005 Sep 01; 13(1):27-32. PubMed ID: 15791409
    [Abstract] [Full Text] [Related]

  • 4. Flow cytometric quantification of human chromosome specific repetitive DNA sequences by single and bicolor fluorescent in situ hybridization to lymphocyte interphase nuclei.
    van Dekken H, Arkesteijn GJ, Visser JW, Bauman JG.
    Cytometry; 1990 Sep 01; 11(1):153-64. PubMed ID: 2307056
    [Abstract] [Full Text] [Related]

  • 5. Fluorescent in situ hybridization with transposable element probes to mitotic chromosomal heterochromatin of Drosophila.
    Dimitri P.
    Methods Mol Biol; 2004 Sep 01; 260():29-39. PubMed ID: 15020800
    [Abstract] [Full Text] [Related]

  • 6. Multiple fluorescence and reflectance simultaneous detection by confocal microscopy of HaeIII digested DNA sequences.
    Neri LM, Santi S, Cinti C, Sabatelli P, Valmori A, Capanni C, Capitani S, Stuppia L, Maraldi NM.
    Eur J Cell Biol; 1996 Sep 01; 71(1):120-8. PubMed ID: 8884185
    [Abstract] [Full Text] [Related]

  • 7. Comparison of fluorescein isothiocyanate- and Texas red-conjugated nucleotides for direct labeling in comparative genomic hybridization.
    Larramendy ML, El-Rifai W, Knuutila S.
    Cytometry; 1998 Mar 01; 31(3):174-9. PubMed ID: 9515716
    [Abstract] [Full Text] [Related]

  • 8. Nonisotopic in situ hybridization. Gene mapping and cytogenetics.
    Bhatt B, Sahinoglu T, Stevens C.
    Methods Mol Biol; 1998 Mar 01; 80():405-17. PubMed ID: 9664397
    [No Abstract] [Full Text] [Related]

  • 9. [Selective chromosome painting using in situ hybridization].
    Pérez Losada A, Woessner S, Solé F, Caballín MR, Florensa L.
    Sangre (Barc); 1993 Apr 01; 38(2):151-4. PubMed ID: 8516730
    [Abstract] [Full Text] [Related]

  • 10. High-resolution mapping of interstitial telomeric repeats in Syrian hamster metaphase chromosomes.
    Demin S, Pleskach N, Svetlova M, Solovjeva L.
    Cytogenet Genome Res; 2011 Apr 01; 132(3):151-5. PubMed ID: 21063079
    [Abstract] [Full Text] [Related]

  • 11. Cloning of DNA sequences localized on proximal fluorescent chromosome bands by microdissection in Pinus densiflora Sieb. & Zucc.
    Hizume M, Shibata F, Maruyama Y, Kondo T.
    Chromosoma; 2001 Sep 01; 110(5):345-51. PubMed ID: 11685534
    [Abstract] [Full Text] [Related]

  • 12. Multiple fluorescence in situ hybridization.
    Nederlof PM, van der Flier S, Wiegant J, Raap AK, Tanke HJ, Ploem JS, van der Ploeg M.
    Cytometry; 1990 Sep 01; 11(1):126-31. PubMed ID: 2307053
    [Abstract] [Full Text] [Related]

  • 13. Family with 22-derived marker chromosome and late-onset dementia of the Alzheimer type: II. Further cytogenetic analysis of the marker and characterization of the high-level repeat sequences using fluorescence in situ hybridization.
    Percy ME, Dearie TG, Jabs EW, Bauer SJ, Chodakowski B, Somerville MJ, Lennox A, McLachlan DR, Baldini A, Miller DA.
    Am J Med Genet; 1993 Aug 01; 47(1):14-9. PubMed ID: 7690182
    [Abstract] [Full Text] [Related]

  • 14. Characterization of Japanese flounder karyotype by chromosome bandings and fluorescence in situ hybridization with DNA markers.
    Fujiwara A, Fujiwara M, Nishida-Umehara C, Abe S, Masaoka T.
    Genetica; 2007 Nov 01; 131(3):267-74. PubMed ID: 17273899
    [Abstract] [Full Text] [Related]

  • 15. [Extending the capabilities of human chromosome analysis: from high-resolution banding to chromatin fiber-FISH].
    Ikeuchi T.
    Hum Cell; 1997 Jun 01; 10(2):121-34. PubMed ID: 9390269
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Heteromorphism of human chromosome 18 detected by fluorescent in situ hybridization.
    Bonfatti A, Giunta C, Sensi A, Gruppioni R, Rubini M, Fontana F.
    Eur J Histochem; 1993 Jun 01; 37(2):149-54. PubMed ID: 7688600
    [Abstract] [Full Text] [Related]

  • 18. Isolation and mapping of human T-cell protein tyrosine phosphatase sequences: localization of genes and pseudogenes discriminated using fluorescence hybridization with genomic versus cDNA probes.
    Johnson CV, Cool DE, Glaccum MB, Green N, Fischer EH, Bruskin A, Hill DE, Lawrence JB.
    Genomics; 1993 Jun 01; 16(3):619-29. PubMed ID: 8325634
    [Abstract] [Full Text] [Related]

  • 19. Fluorescence intensity profiles of in situ hybridization signals depict genome architecture within human interphase nuclei.
    Iourov IY, Vorsanova SG, Yurov YB.
    Tsitol Genet; 2008 Jun 01; 42(5):3-8. PubMed ID: 19140435
    [Abstract] [Full Text] [Related]

  • 20. Detailed Hylobates lar karyotype defined by 25-color FISH and multicolor banding.
    Mrasek K, Heller A, Rubtsov N, Trifonov V, Starke H, Claussen U, Liehr T.
    Int J Mol Med; 2003 Aug 01; 12(2):139-46. PubMed ID: 12851708
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 20.