These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
538 related items for PubMed ID: 8535240
1. Posttranslational modifications of bovine osteopontin: identification of twenty-eight phosphorylation and three O-glycosylation sites. Sørensen ES, Højrup P, Petersen TE. Protein Sci; 1995 Oct; 4(10):2040-9. PubMed ID: 8535240 [Abstract] [Full Text] [Related]
2. Identification of two phosphorylation motifs in bovine osteopontin. Sørensen ES, Petersen TE. Biochem Biophys Res Commun; 1994 Jan 14; 198(1):200-5. PubMed ID: 8292023 [Abstract] [Full Text] [Related]
3. Identification of endogenous phosphorylation sites of bovine medium and low molecular weight neurofilament proteins by tandem mass spectrometry. Trimpin S, Mixon AE, Stapels MD, Kim MY, Spencer PS, Deinzer ML. Biochemistry; 2004 Feb 24; 43(7):2091-105. PubMed ID: 14967049 [Abstract] [Full Text] [Related]
4. Comprehensive identification of post-translational modifications of rat bone osteopontin by mass spectrometry. Keykhosravani M, Doherty-Kirby A, Zhang C, Brewer D, Goldberg HA, Hunter GK, Lajoie G. Biochemistry; 2005 May 10; 44(18):6990-7003. PubMed ID: 15865444 [Abstract] [Full Text] [Related]
5. Post-translationally modified residues of native human osteopontin are located in clusters: identification of 36 phosphorylation and five O-glycosylation sites and their biological implications. Christensen B, Nielsen MS, Haselmann KF, Petersen TE, Sørensen ES. Biochem J; 2005 Aug 15; 390(Pt 1):285-92. PubMed ID: 15869464 [Abstract] [Full Text] [Related]
6. Characterization of an avian bone sialoprotein (BSP) cDNA: comparisons to mammalian BSP and identification of conserved structural domains. Yang R, Gotoh Y, Moore MA, Rafidi K, Gerstenfeld LC. J Bone Miner Res; 1995 Apr 15; 10(4):632-40. PubMed ID: 7610935 [Abstract] [Full Text] [Related]
7. Phosphorylation of osteopontin by Golgi apparatus casein kinase. Lasa M, Chang PL, Prince CW, Pinna LA. Biochem Biophys Res Commun; 1997 Nov 26; 240(3):602-5. PubMed ID: 9398611 [Abstract] [Full Text] [Related]
8. Characterization of serine and threonine phosphorylation sites in beta-elimination/ethanethiol addition-modified proteins by electrospray tandem mass spectrometry and database searching. Jaffe H, Veeranna, Pant HC. Biochemistry; 1998 Nov 17; 37(46):16211-24. PubMed ID: 9819213 [Abstract] [Full Text] [Related]
9. The primary structure of caprine PP3: amino acid sequence, phosphorylation, and glycosylation of component PP3 from the proteose-peptone fraction of caprine milk. Lister IM, Rasmussen LK, Johnsen LB, Møller L, Petersen TE, Sørensen ES. J Dairy Sci; 1998 Aug 17; 81(8):2111-5. PubMed ID: 9749374 [Abstract] [Full Text] [Related]
10. Determination of the sites of posttranslational modifications in the charge isomers of bovine myelin basic protein by capillary electrophoresis-mass spectroscopy. Zand R, Li MX, Jin X, Lubman D. Biochemistry; 1998 Feb 24; 37(8):2441-9. PubMed ID: 9485392 [Abstract] [Full Text] [Related]
12. Protein kinases of cultured osteoblasts: selectivity for the extracellular matrix proteins of bone and their catalytic competence for osteopontin. Salih E, Ashkar S, Gerstenfeld LC, Glimcher MJ. J Bone Miner Res; 1996 Oct 01; 11(10):1461-73. PubMed ID: 8889846 [Abstract] [Full Text] [Related]
13. Two nonmuscle myosin II heavy chain isoforms expressed in rabbit brains: filament forming properties, the effects of phosphorylation by protein kinase C and casein kinase II, and location of the phosphorylation sites. Murakami N, Chauhan VP, Elzinga M. Biochemistry; 1998 Feb 17; 37(7):1989-2003. PubMed ID: 9485326 [Abstract] [Full Text] [Related]
14. Identification of the phosphorylated sites of metabolically 32P-labeled osteopontin from cultured chicken osteoblasts. Salih E, Ashkar S, Gerstenfeld LC, Glimcher MJ. J Biol Chem; 1997 May 23; 272(21):13966-73. PubMed ID: 9153260 [Abstract] [Full Text] [Related]
15. Analysis of protein phosphorylation by hypothesis-driven multiple-stage mass spectrometry. Chang EJ, Archambault V, McLachlin DT, Krutchinsky AN, Chait BT. Anal Chem; 2004 Aug 01; 76(15):4472-83. PubMed ID: 15283590 [Abstract] [Full Text] [Related]
17. Prokaryotic expression of bone sialoprotein and identification of casein kinase II phosphorylation sites. Saad FA, Salih E, Wunderlich L, Flückiger R, Glimcher MJ. Biochem Biophys Res Commun; 2005 Jul 29; 333(2):443-7. PubMed ID: 15950178 [Abstract] [Full Text] [Related]
18. Identification of the major regulatory phosphorylation site in sucrose-phosphate synthase. McMichael RW, Klein RR, Salvucci ME, Huber SC. Arch Biochem Biophys; 1993 Dec 29; 307(2):248-52. PubMed ID: 8274010 [Abstract] [Full Text] [Related]
19. Chromogranin A from bovine adrenal medulla: molecular characterization of glycosylations, phosphorylations, and sequence heterogeneities by mass spectrometry. Bauer SH, Zhang XY, Van Dongen W, Claeys M, Przybylski M. Anal Biochem; 1999 Oct 01; 274(1):69-80. PubMed ID: 10527498 [Abstract] [Full Text] [Related]
20. Phosphorylation and glycosylation of bovine lens MP20. Ervin LA, Ball LE, Crouch RK, Schey KL. Invest Ophthalmol Vis Sci; 2005 Feb 01; 46(2):627-35. PubMed ID: 15671292 [Abstract] [Full Text] [Related] Page: [Next] [New Search]