These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
100 related items for PubMed ID: 8535301
21. Proximity between fluorescent probes attached to four essential lysyl residues in phosphoenolpyruvate carboxylase. A resonance energy transfer study. Wagner R, Podestá FE, González DH, Andreo CS. Eur J Biochem; 1988 May 02; 173(3):561-8. PubMed ID: 2453360 [Abstract] [Full Text] [Related]
22. Non-photosynthetic 'malic enzyme' from maize: a constituvely expressed enzyme that responds to plant defence inducers. Maurino VG, Saigo M, Andreo CS, Drincovich MF. Plant Mol Biol; 2001 Mar 02; 45(4):409-20. PubMed ID: 11352460 [Abstract] [Full Text] [Related]
25. CO2 is the inorganic carbon substrate of NADP malic enzymes from Zea mays and from wheat germ. Häusler RE, Holtum JA, Latzko E. Eur J Biochem; 1987 Mar 16; 163(3):619-26. PubMed ID: 3104039 [Abstract] [Full Text] [Related]
27. The roles of Tyr(91) and Lys(162) in general acid-base catalysis in the pigeon NADP+-dependent malic enzyme. Kuo CC, Lin KY, Hsu YJ, Lin SY, Lin YT, Chang GG, Chou WY. Biochem J; 2008 May 01; 411(3):467-73. PubMed ID: 18248329 [Abstract] [Full Text] [Related]
28. Temperature studies of glyceraldehyde-3-phosphate dehydrogenase binding to liposomes using fluorescence technique. Michalak K, Gutowicz J, Modrzycka T. Gen Physiol Biophys; 1992 Dec 01; 11(6):545-54. PubMed ID: 1292953 [Abstract] [Full Text] [Related]
29. Identification of the N- and C-terminal substrate binding segments of ferredoxin-NADP+ reductase by NMR. Maeda M, Lee YH, Ikegami T, Tamura K, Hoshino M, Yamazaki T, Nakayama M, Hase T, Goto Y. Biochemistry; 2005 Aug 09; 44(31):10644-53. PubMed ID: 16060673 [Abstract] [Full Text] [Related]
30. Site-directed fluorescence labeling of P-glycoprotein on cysteine residues in the nucleotide binding domains. Liu R, Sharom FJ. Biochemistry; 1996 Sep 10; 35(36):11865-73. PubMed ID: 8794769 [Abstract] [Full Text] [Related]
31. Association of NADP- and NAD-linked malic enzyme acitivities in Zea mays: relation to C4 pathway photosynthesis. Hatch MD, Mau SL. Arch Biochem Biophys; 1977 Mar 10; 179(2):361-9. PubMed ID: 15513 [No Abstract] [Full Text] [Related]
34. The activity and isoforms of NADP-malic enzyme in Nicotiana benthamiana plants under biotic stress. Doubnerová V, Jirásková A, Janosková M, Müller K, Bat'ková P, Synková H, Cerovská N, Ryslavá H. Gen Physiol Biophys; 2007 Dec 10; 26(4):281-9. PubMed ID: 18281746 [Abstract] [Full Text] [Related]
36. In silico design and synthesis of piperazine-1-pyrrolidine-2,5-dione scaffold-based novel malic enzyme inhibitors. Zhang YJ, Wang Z, Sprous D, Nabioullin R. Bioorg Med Chem Lett; 2006 Feb 10; 16(3):525-8. PubMed ID: 16288866 [Abstract] [Full Text] [Related]
37. Active site mapping studies of malate dehydrogenase : identification of essential amino acid residues by o-phthalaldehyde. Sheikh S, Katiyar SS. Biochem Int; 1992 Jul 10; 27(3):517-24. PubMed ID: 1417888 [Abstract] [Full Text] [Related]
38. Chemical modification of SH groups of E. coli phosphofructokinase-2 induces subunit dissociation: monomers are inactive but preserve ligand binding properties. Guixé V. Arch Biochem Biophys; 2000 Apr 15; 376(2):313-9. PubMed ID: 10775417 [Abstract] [Full Text] [Related]