These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
134 related items for PubMed ID: 8535520
1. A ribonucleic antiterminator sequence (RAT) and a distant palindrome are both involved in sucrose induction of the Bacillus subtilis sacXY regulatory operon. Tortosa P, Le Coq D. Microbiology (Reading); 1995 Nov; 141 ( Pt 11)():2921-7. PubMed ID: 8535520 [Abstract] [Full Text] [Related]
2. Transcription of the Bacillus subtilis sacX and sacY genes, encoding regulators of sucrose metabolism, is both inducible by sucrose and controlled by the DegS-DegU signalling system. Crutz AM, Steinmetz M. J Bacteriol; 1992 Oct; 174(19):6087-95. PubMed ID: 1400159 [Abstract] [Full Text] [Related]
3. Specificity determinants and structural features in the RNA target of the bacterial antiterminator proteins of the BglG/SacY family. Aymerich S, Steinmetz M. Proc Natl Acad Sci U S A; 1992 Nov 01; 89(21):10410-4. PubMed ID: 1279678 [Abstract] [Full Text] [Related]
4. In vitro reconstitution of transcriptional antitermination by the SacT and SacY proteins of Bacillus subtilis. Arnaud M, Débarbouillé M, Rapoport G, Saier MH, Reizer J. J Biol Chem; 1996 Aug 02; 271(31):18966-72. PubMed ID: 8702561 [Abstract] [Full Text] [Related]
5. The sacT gene regulating the sacPA operon in Bacillus subtilis shares strong homology with transcriptional antiterminators. Debarbouille M, Arnaud M, Fouet A, Klier A, Rapoport G. J Bacteriol; 1990 Jul 02; 172(7):3966-73. PubMed ID: 2163394 [Abstract] [Full Text] [Related]
6. Induction of levansucrase in Bacillus subtilis: an antitermination mechanism negatively controlled by the phosphotransferase system. Crutz AM, Steinmetz M, Aymerich S, Richter R, Le Coq D. J Bacteriol; 1990 Feb 02; 172(2):1043-50. PubMed ID: 2105292 [Abstract] [Full Text] [Related]
7. Regulation of the sacPA operon of Bacillus subtilis: identification of phosphotransferase system components involved in SacT activity. Arnaud M, Vary P, Zagorec M, Klier A, Debarbouille M, Postma P, Rapoport G. J Bacteriol; 1992 May 02; 174(10):3161-70. PubMed ID: 1577686 [Abstract] [Full Text] [Related]
8. Induction of saccharolytic enzymes by sucrose in Bacillus subtilis: evidence for two partially interchangeable regulatory pathways. Steinmetz M, Le Coq D, Aymerich S. J Bacteriol; 1989 Mar 02; 171(3):1519-23. PubMed ID: 2493447 [Abstract] [Full Text] [Related]
9. Specific interaction of the RNA-binding domain of the bacillus subtilis transcriptional antiterminator GlcT with its RNA target, RAT. Langbein I, Bachem S, Stülke J. J Mol Biol; 1999 Nov 05; 293(4):795-805. PubMed ID: 10543968 [Abstract] [Full Text] [Related]
13. SacY, a transcriptional antiterminator from Bacillus subtilis, is regulated by phosphorylation in vivo. Idelson M, Amster-Choder O. J Bacteriol; 1998 Feb 05; 180(3):660-6. PubMed ID: 9457872 [Abstract] [Full Text] [Related]
14. Crystallization of the RNA-binding domain of the transcriptional antiterminator protein SacY from Bacillus subtilis. Manival X, Aymerich S, Strub MP, Dumas C, Kochoyan M, van Tilbeurgh H. Proteins; 1997 Aug 05; 28(4):590-4. PubMed ID: 9261875 [Abstract] [Full Text] [Related]
15. The lac operon of Lactobacillus casei contains lacT, a gene coding for a protein of the Bg1G family of transcriptional antiterminators. Alpert CA, Siebers U. J Bacteriol; 1997 Mar 05; 179(5):1555-62. PubMed ID: 9045813 [Abstract] [Full Text] [Related]
16. Cloning and preliminary characterization of the sacS locus from Bacillus subtilis which controls the regulation of the exoenzyme levansucrase. Aymerich S, Steinmetz M. Mol Gen Genet; 1987 Jun 05; 208(1-2):114-20. PubMed ID: 3039303 [Abstract] [Full Text] [Related]
19. Gene organisation and regulatory sequences in the sucrose utilisation cluster of Bacillus stearothermophilus NUB36. Li Y, Ferenci T. Gene; 1997 Aug 22; 195(2):195-200. PubMed ID: 9305764 [Abstract] [Full Text] [Related]