These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


164 related items for PubMed ID: 8536715

  • 21. Effects of substitution of tryptophan 412 in the substrate activation pathway of yeast pyruvate decarboxylase.
    Li H, Jordan F.
    Biochemistry; 1999 Aug 03; 38(31):10004-12. PubMed ID: 10433707
    [Abstract] [Full Text] [Related]

  • 22. Pyruvate decarboxylase from Zymomonas mobilis. Structure and re-activation of apoenzyme by the cofactors thiamin diphosphate and magnesium ion.
    Diefenbach RJ, Duggleby RG.
    Biochem J; 1991 Jun 01; 276 ( Pt 2)(Pt 2):439-45. PubMed ID: 2049073
    [Abstract] [Full Text] [Related]

  • 23. Translocation of Zymomonas mobilis pyruvate decarboxylase to periplasmic compartment for production of acetaldehyde outside the cytosol.
    Balodite E, Strazdina I, Martynova J, Galinina N, Rutkis R, Lasa Z, Kalnenieks U.
    Microbiologyopen; 2019 Aug 01; 8(8):e00809. PubMed ID: 30770675
    [Abstract] [Full Text] [Related]

  • 24. Role of pyruvate in enhancing pyruvate decarboxylase stability towards benzaldehyde.
    Rosche B, Breuer M, Hauer B, Rogers PL.
    J Biotechnol; 2005 Jan 12; 115(1):91-9. PubMed ID: 15607228
    [Abstract] [Full Text] [Related]

  • 25. Synthesis and biological evaluation of pyrophosphate mimics of thiamine pyrophosphate based on a triazole scaffold.
    Erixon KM, Dabalos CL, Leeper FJ.
    Org Biomol Chem; 2008 Oct 07; 6(19):3561-72. PubMed ID: 19082157
    [Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30. Cofactor activation and substrate binding in pyruvate decarboxylase. Insights into the reaction mechanism from molecular dynamics simulations.
    Lie MA, Celik L, Jørgensen KA, Schiøtt B.
    Biochemistry; 2005 Nov 15; 44(45):14792-806. PubMed ID: 16274227
    [Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34. (R)-phenylacetylcarbinol production in aqueous/organic two-phase systems using partially purified pyruvate decarboxylase from Candida utilis.
    Sandford V, Breuer M, Hauer B, Rogers P, Rosche B.
    Biotechnol Bioeng; 2005 Jul 20; 91(2):190-8. PubMed ID: 15892055
    [Abstract] [Full Text] [Related]

  • 35. Consequences of a modified putative substrate-activation site on catalysis by yeast pyruvate decarboxylase.
    Wang J, Golbik R, Seliger B, Spinka M, Tittmann K, Hübner G, Jordan F.
    Biochemistry; 2001 Feb 13; 40(6):1755-63. PubMed ID: 11327837
    [Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. Effects of deletions at the carboxyl terminus of Zymomonas mobilis pyruvate decarboxylase on the kinetic properties and substrate specificity.
    Chang AK, Nixon PF, Duggleby RG.
    Biochemistry; 2000 Aug 08; 39(31):9430-7. PubMed ID: 10924138
    [Abstract] [Full Text] [Related]

  • 38. Inhibition of thiamin diphosphate dependent enzymes by 3-deazathiamin diphosphate.
    Mann S, Perez Melero C, Hawksley D, Leeper FJ.
    Org Biomol Chem; 2004 Jun 21; 2(12):1732-41. PubMed ID: 15188040
    [Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 9.