These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
203 related items for PubMed ID: 8540305
1. Comparison of the active site specificity of the aspartic proteinases based on a systematic series of peptide substrates. Dunn BM, Scarborough PE, Lowther WT, Rao-Naik C. Adv Exp Med Biol; 1995; 362():1-9. PubMed ID: 8540305 [No Abstract] [Full Text] [Related]
2. Site-directed mutagenesis of rhizopuspepsin: an analysis of unique specificity. Lowther WT, Dunn BM. Adv Exp Med Biol; 1995; 362():555-8. PubMed ID: 8540371 [No Abstract] [Full Text] [Related]
3. Structure-function database for active site binding to the aspartic proteinases. Rao C, Scarborough PE, Lowther WT, Kay J, Batley B, Rapundalo S, Klutchko S, Taylor MD, Dunn BM. Adv Exp Med Biol; 1991; 306():143-7. PubMed ID: 1812702 [No Abstract] [Full Text] [Related]
4. The two sides of enzyme-substrate specificity: lessons from the aspartic proteinases. Dunn BM, Hung S. Biochim Biophys Acta; 2000 Mar 07; 1477(1-2):231-40. PubMed ID: 10708860 [Abstract] [Full Text] [Related]
5. Nonspecific electrostatic binding of substrates and inhibitors to porcine pepsin. Kuzmic P, Sun CQ, Zhao ZC, Rich DH. Adv Exp Med Biol; 1991 Mar 07; 306():75-86. PubMed ID: 1812761 [No Abstract] [Full Text] [Related]
6. Exploration of subsite binding specificity of human cathepsin D through kinetics and rule-based molecular modeling. Scarborough PE, Guruprasad K, Topham C, Richo GR, Conner GE, Blundell TL, Dunn BM. Protein Sci; 1993 Feb 07; 2(2):264-76. PubMed ID: 8443603 [Abstract] [Full Text] [Related]
11. Subsite preferences of retroviral proteinases. Dunn BM, Gustchina A, Wlodawer A, Kay J. Methods Enzymol; 1994 Feb 07; 241():254-78. PubMed ID: 7854181 [No Abstract] [Full Text] [Related]
12. Structure of human cathepsin D: comparison of inhibitor binding and subdomain displacement with other aspartic proteases. Erickson JW, Baldwin ET, Bhat TN, Gulnik S. Adv Exp Med Biol; 1995 Feb 07; 362():181-92. PubMed ID: 8540317 [No Abstract] [Full Text] [Related]
13. Modification of the substrate specificity of porcine pepsin for the enzymatic production of bovine hide gelatin. Galea CA, Dalrymple BP, Kuypers R, Blakeley R. Protein Sci; 2000 Oct 07; 9(10):1947-59. PubMed ID: 11106168 [Abstract] [Full Text] [Related]
14. Comparisons of the three-dimensional structures, specificities and glycosylation of renins, yeast proteinase A and cathepsin D. Aguilar CF, Dhanaraj V, Guruprasad K, Dealwis C, Badasso M, Cooper JB, Wood SP, Blundell TL. Adv Exp Med Biol; 1995 Oct 07; 362():155-66. PubMed ID: 8540315 [Abstract] [Full Text] [Related]
15. Secondary substrate binding in aspartic proteinases: contributions of subsites S3 and S'2 to kcat. Balbaa M, Cunningham A, Hofmann T. Arch Biochem Biophys; 1993 Nov 01; 306(2):297-303. PubMed ID: 8215428 [Abstract] [Full Text] [Related]
16. Substrate specificity study of recombinant Rhizopus chinensis aspartic proteinase. Lowther WT, Chen Z, Lin XL, Tang J, Dunn BM. Adv Exp Med Biol; 1991 Nov 01; 306():275-9. PubMed ID: 1812717 [No Abstract] [Full Text] [Related]
17. Comparison of the specificity of the aspartic proteinases towards internally consistent sets of oligopeptide substrates. Dunn BM, Oda K, Kay J, Rao-Naik C, Lowther WT, Beyer BM, Scarborough PE, Bukhtiyarova M. Adv Exp Med Biol; 1998 Nov 01; 436():133-8. PubMed ID: 9561210 [No Abstract] [Full Text] [Related]
18. Comparison of kinetic properties of native and recombinant human cathepsin D. Scarborough PE, Richo GR, Kay J, Conner GE, Dunn BM. Adv Exp Med Biol; 1991 Nov 01; 306():343-7. PubMed ID: 1812725 [No Abstract] [Full Text] [Related]