These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
74 related items for PubMed ID: 8541313
1. Nonenzymatic acetolactate oxidation to diacetyl by flavin, nicotinamide and quinone coenzymes. Park HS, Xing R, Whitman WB. Biochim Biophys Acta; 1995 Dec 14; 1245(3):366-70. PubMed ID: 8541313 [Abstract] [Full Text] [Related]
2. X-ray structures of two oxidation states of a flavin-nicotinamide biscoenzyme and models for flavin--nicotinamide interactions. Porter DJ, Bright HJ, Voet D. Nature; 1977 Sep 15; 269(5625):213-7. PubMed ID: 145544 [Abstract] [Full Text] [Related]
3. Diacetyl and alpha-acetolactate overproduction by Lactococcus lactis subsp. lactis biovar diacetylactis mutants that are deficient in alpha-acetolactate decarboxylase and have a low lactate dehydrogenase activity. Monnet C, Aymes F, Corrieu G. Appl Environ Microbiol; 2000 Dec 15; 66(12):5518-20. PubMed ID: 11097941 [Abstract] [Full Text] [Related]
4. Method for the simultaneous assay of diacetyl and acetoin in the presence of alpha-acetolactate: application in determining the kinetic parameters for the decomposition of alpha-acetolactate. Kobayashi K, Kusaka K, Takahashi T, Sato K. J Biosci Bioeng; 2005 May 15; 99(5):502-7. PubMed ID: 16233823 [Abstract] [Full Text] [Related]
5. Reduction of aryl-nitroso compounds by pyridine and flavin coenzymes. Leskovac V, Svircević J, Trivić S, Popović M, Radulović M. Int J Biochem; 1989 May 15; 21(8):825-34. PubMed ID: 2531098 [Abstract] [Full Text] [Related]
6. The Role of a FAD Cofactor in the Regulation of Acetohydroxyacid Synthase by Redox Signaling Molecules. Lonhienne T, Garcia MD, Guddat LW. J Biol Chem; 2017 Mar 24; 292(12):5101-5109. PubMed ID: 28159840 [Abstract] [Full Text] [Related]
8. Transient kinetics of intracomplex electron transfer in the human cytochrome b5 reductase-cytochrome b5 system: NAD+ modulates protein-protein binding and electron transfer. Meyer TE, Shirabe K, Yubisui T, Takeshita M, Bes MT, Cusanovich MA, Tollin G. Arch Biochem Biophys; 1995 Apr 20; 318(2):457-64. PubMed ID: 7733677 [Abstract] [Full Text] [Related]
9. Metabolic engineering of Candida glabrata for diacetyl production. Gao X, Xu N, Li S, Liu L. PLoS One; 2014 Apr 20; 9(3):e89854. PubMed ID: 24614328 [Abstract] [Full Text] [Related]
10. Towards diacetyl-less brewers' yeast. Influence of ilv2 and ilv5 mutations. Gjermansen C, Nilsson-Tillgren T, Petersen JG, Kielland-Brandt MC, Sigsgaard P, Holmberg S. J Basic Microbiol; 1988 Apr 20; 28(3):175-83. PubMed ID: 3057172 [Abstract] [Full Text] [Related]
11. Kinetic Characterization of PA1225 from Pseudomonas aeruginosa PAO1 Reveals a New NADPH:Quinone Reductase. Flores E, Gadda G. Biochemistry; 2018 May 29; 57(21):3050-3058. PubMed ID: 29715013 [Abstract] [Full Text] [Related]
12. Diacetyl control during brewery fermentation via adaptive laboratory engineering of the lager yeast Saccharomyces pastorianus. Gibson B, Vidgren V, Peddinti G, Krogerus K. J Ind Microbiol Biotechnol; 2018 Dec 29; 45(12):1103-1112. PubMed ID: 30306366 [Abstract] [Full Text] [Related]
13. One-electron reduction of quinones by the neuronal nitric-oxide synthase reductase domain. Matsuda H, Kimura S, Iyanagi T. Biochim Biophys Acta; 2000 Jul 20; 1459(1):106-16. PubMed ID: 10924903 [Abstract] [Full Text] [Related]
14. Electron transfer in acetohydroxy acid synthase as a side reaction of catalysis. Implications for the reactivity and partitioning of the carbanion/enamine form of (alpha-hydroxyethyl)thiamin diphosphate in a "nonredox" flavoenzyme. Tittmann K, Schröder K, Golbik R, McCourt J, Kaplun A, Duggleby RG, Barak Z, Chipman DM, Hübner G. Biochemistry; 2004 Jul 13; 43(27):8652-61. PubMed ID: 15236573 [Abstract] [Full Text] [Related]
15. Variation in α-acetolactate production within the hybrid lager yeast group Saccharomyces pastorianus and affirmation of the central role of the ILV6 gene. Gibson B, Krogerus K, Ekberg J, Monroux A, Mattinen L, Rautio J, Vidgren V. Yeast; 2015 Jan 13; 32(1):301-16. PubMed ID: 24965182 [Abstract] [Full Text] [Related]
17. Nicotinamide-dependent one-electron and two-electron (flavin) oxidoreduction: thermodynamics, kinetics, and mechanism. Blankenhorn G. Eur J Biochem; 1976 Aug 01; 67(1):67-80. PubMed ID: 134889 [Abstract] [Full Text] [Related]
18. Direct electrochemistry of the flavin domain of assimilatory nitrate reductase: effects of NAD+ and NAD+ analogs. Barber MJ, Trimboli AJ, Nomikos S, Smith ET. Arch Biochem Biophys; 1997 Sep 01; 345(1):88-96. PubMed ID: 9281315 [Abstract] [Full Text] [Related]
19. Mechanism of NAD(P)H:quinone reductase: Ab initio studies of reduced flavin. Cavelier G, Amzel LM. Proteins; 2001 Jun 01; 43(4):420-32. PubMed ID: 11340659 [Abstract] [Full Text] [Related]
20. Production of diacetyl by metabolically engineered Enterobacter cloacae. Zhang L, Zhang Y, Liu Q, Meng L, Hu M, Lv M, Li K, Gao C, Xu P, Ma C. Sci Rep; 2015 Mar 12; 5():9033. PubMed ID: 25761989 [Abstract] [Full Text] [Related] Page: [Next] [New Search]