These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
171 related items for PubMed ID: 8554546
1. Catalytic consequences of experimental evolution: catalysis by a 'third-generation' evolvant of the second beta-galactosidase of Escherichia coli, ebgabcde, and by ebgabcd, a 'second-generation' evolvant containing two supposedly 'kinetically silent' mutations. Krishnan S, Hall BG, Sinnott ML. Biochem J; 1995 Dec 15; 312 ( Pt 3)(Pt 3):971-7. PubMed ID: 8554546 [Abstract] [Full Text] [Related]
2. The catalytic consequences of experimental evolution. Studies on the subunit structure of the second (ebg) beta-galactosidase of Escherichia coli, and on catalysis by ebgab, an experimental evolvant containing two amino acid substitutions. Elliott AC, K S, Sinnott ML, Smith PJ, Bommuswamy J, Guo Z, Hall BG, Zhang Y. Biochem J; 1992 Feb 15; 282 ( Pt 1)(Pt 1):155-64. PubMed ID: 1540130 [Abstract] [Full Text] [Related]
3. Catalysis by the large subunit of the second beta-galactosidase of Escherichia coli in the absence of the small subunit. Calugaru SV, Hall BG, Sinnott ML. Biochem J; 1995 Nov 15; 312 ( Pt 1)(Pt 1):281-6. PubMed ID: 7492325 [Abstract] [Full Text] [Related]
4. The catalytic consequences of experimental evolution. Transition-state structure during catalysis by the evolved beta-galactosidases of Escherichia coli (ebg enzymes) changed by a single mutational event. Li BF, Holdup D, Morton CA, Sinnott ML. Biochem J; 1989 May 15; 260(1):109-14. PubMed ID: 2505746 [Abstract] [Full Text] [Related]
5. A solvent-isotope-effect study of proton transfer during catalysis by Escherichia coli (lacZ) beta-galactosidase. Selwood T, Sinnott ML. Biochem J; 1990 Jun 01; 268(2):317-23. PubMed ID: 2114090 [Abstract] [Full Text] [Related]
6. Larger increases in sensitivity to paracatalytic inactivation than in catalytic competence during experimental evolution of the second beta-galactosidase of Escherichia coli. Calugaru SV, Krishnan S, Chany CJ, Hall BG, Sinnott ML. Biochem J; 1997 Jul 01; 325 ( Pt 1)(Pt 1):117-21. PubMed ID: 9224636 [Abstract] [Full Text] [Related]
7. Large changes of transition-state structure during experimental evolution of an enzyme. Srinivasan K, Konstantinidis A, Sinnott ML, Hall BG. Biochem J; 1993 Apr 01; 291 ( Pt 1)(Pt 1):15-7. PubMed ID: 8471034 [Abstract] [Full Text] [Related]
8. Structure-reactivity relationships for beta-galactosidase (Escherichia coli, lac Z). 2. Reactions of the galactosyl-enzyme intermediate with alcohols and azide ion. Richard JP, Westerfeld JG, Lin S, Beard J. Biochemistry; 1995 Sep 19; 34(37):11713-24. PubMed ID: 7547903 [Abstract] [Full Text] [Related]
9. Structure-reactivity relationships for beta-galactosidase (Escherichia coli, lac Z). 4. Mechanism for reaction of nucleophiles with the galactosyl-enzyme intermediates of E461G and E461Q beta-galactosidases. Richard JP, Huber RE, Heo C, Amyes TL, Lin S. Biochemistry; 1996 Sep 24; 35(38):12387-401. PubMed ID: 8823174 [Abstract] [Full Text] [Related]
10. The necessity of magnesium cation for acid assistance aglycone departure in catalysis by Escherichia coli (lacZ) beta-galactosidase. Sinnott ML, Withers SG. Biochem J; 1978 Nov 01; 175(2):539-46. PubMed ID: 105722 [Abstract] [Full Text] [Related]
11. Trp-999 of beta-galactosidase (Escherichia coli) is a key residue for binding, catalysis, and synthesis of allolactose, the natural lac operon inducer. Huber RE, Hakda S, Cheng C, Cupples CG, Edwards RA. Biochemistry; 2003 Feb 18; 42(6):1796-803. PubMed ID: 12578395 [Abstract] [Full Text] [Related]
12. Determination of the roles of Glu-461 in beta-galactosidase (Escherichia coli) using site-specific mutagenesis. Cupples CG, Miller JH, Huber RE. J Biol Chem; 1990 Apr 05; 265(10):5512-8. PubMed ID: 1969405 [Abstract] [Full Text] [Related]
13. Transgalactosylation activity of ebg beta-galactosidase synthesizes allolactose from lactose. Hall BG. J Bacteriol; 1982 Apr 05; 150(1):132-40. PubMed ID: 6801019 [Abstract] [Full Text] [Related]
14. Structural basis for the altered activity of Gly794 variants of Escherichia coli beta-galactosidase. Juers DH, Hakda S, Matthews BW, Huber RE. Biochemistry; 2003 Nov 25; 42(46):13505-11. PubMed ID: 14621996 [Abstract] [Full Text] [Related]
15. Substitutions for Gly-794 show that binding interactions are important determinants of the catalytic action of beta-galactosidase (Escherichia coli). Martinez-Bilbao M, Huber RE. Biochem Cell Biol; 1994 Nov 25; 72(7-8):313-9. PubMed ID: 7893471 [Abstract] [Full Text] [Related]
16. Structure-reactivity relationships for beta-galactosidase (Escherichia coli, lac Z). 3. Evidence that Glu-461 participates in Brønsted acid-base catalysis of beta-D-galactopyranosyl group transfer. Richard JP, Huber RE, Lin S, Heo C, Amyes TL. Biochemistry; 1996 Sep 24; 35(38):12377-86. PubMed ID: 8823173 [Abstract] [Full Text] [Related]
17. Effects of galactose and glucose on the hydrolysis reaction of a thermostable beta-galactosidase from Caldicellulosiruptor saccharolyticus. Park AR, Oh DK. Appl Microbiol Biotechnol; 2010 Feb 24; 85(5):1427-35. PubMed ID: 19662397 [Abstract] [Full Text] [Related]
19. Functional properties of beta-galactosidase from mutant strain 13 PO of Escherichia coli. Deschavanne PJ, Viratelle OM, Yon JM. Proc Natl Acad Sci U S A; 1978 Apr 24; 75(4):1892-6. PubMed ID: 25441 [Abstract] [Full Text] [Related]