These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. A new skeletal muscle linear-pull energy convertor as a power source for prosthetic circulatory support devices [corrected]. Farrar DJ, Hill JD. J Heart Lung Transplant; 1992; 11(5):S341-50. PubMed ID: 1420227 [Abstract] [Full Text] [Related]
7. Linear performance characteristics of latissimus dorsi muscle: potential for cardiac assistance. Gustafson KJ, Guilbeau EJ, Sweeney JD. ASAIO J; 2003; 49(5):572-7. PubMed ID: 14524567 [Abstract] [Full Text] [Related]
8. Chronic implantation of a skeletal muscle energy convertor for cardiac assist devices: a preliminary report. Reichenbach SH, Gustafson KJ, Khazalpour KM, Farrar DJ, Hill JD. ASAIO J; 1998; 44(5):M745-9. PubMed ID: 9804536 [Abstract] [Full Text] [Related]
9. Ex vivo performance of muscle powered cardiac assist device: potential for right ventricular support. Sakakibara N, Takemura H, Tedoriya T, Kawasuji M, Misaki T, Iwa T. J Card Surg; 1991 Mar; 6(1 Suppl):171-4. PubMed ID: 1807500 [Abstract] [Full Text] [Related]
10. A compressive type skeletal muscle pump as a biomechanical energy source. Mizuhara H, Oda T, Koshiji T, Ikeda T, Nishimura K, Nomoto S, Matsuda K, Tsutsui N, Kanda K, Ban T. ASAIO J; 1996 Mar; 42(5):M637-41. PubMed ID: 8944958 [Abstract] [Full Text] [Related]
11. In vivo performance of a muscle-powered drive system for implantable blood pumps. Trumble DR, Melvin DB, Dean DA, Magovern JA. ASAIO J; 2008 Mar; 54(3):227-32. PubMed ID: 18496270 [Abstract] [Full Text] [Related]
12. Sustained skeletal muscle power for cardiac assist devices: implications of metabolic constraints. Reichenbach SH, Egrie GD, Marinache SM, Gustafson KJ, Farrar DJ, Hill JD. ASAIO J; 2001 Mar; 47(5):541-7. PubMed ID: 11575834 [Abstract] [Full Text] [Related]
13. A permanent prosthesis for converting in situ muscle contractions into hydraulic power for cardiac assist. Trumble DR, Magovern JA. J Appl Physiol (1985); 1997 May; 82(5):1704-11. PubMed ID: 9134922 [Abstract] [Full Text] [Related]
14. Applicability of the latissimus dorsi muscle in situ as a biomechanical energy source. Mizuhara H, Koshiji T, Nishimura K, Nomoto S, Matsuda K, Tsutsui N, Kanda K, Ban T. ASAIO J; 1995 May; 41(3):M495-9. PubMed ID: 8573854 [Abstract] [Full Text] [Related]
15. Evaluation of a compressive-type skeletal muscle pump for cardiac assistance. Mizuhara H, Koshiji T, Nishimura K, Nomoto S, Matsuda K, Ban T. Ann Thorac Surg; 1999 Jan; 67(1):105-11. PubMed ID: 10086533 [Abstract] [Full Text] [Related]
17. Monitoring and regulating latissimus dorsi muscle performance for circulatory assist. Takagi H, Hirose H, Sasaki E, Imaizumi M, Hirota T, Bando M, Furuzawa Y, Murakawa S, Mori Y. ASAIO J; 1997 Jul; 43(4):345-51. PubMed ID: 9242951 [Abstract] [Full Text] [Related]
19. Comparative study of the biomechanical performance of trained and untrained skeletal muscle. Petrou M, Bowles C, Yacoub M. Cardiovasc Res; 1997 Mar; 33(3):583-92. PubMed ID: 9093528 [Abstract] [Full Text] [Related]
20. Output power and metabolic input power of skeletal muscle contracting linearly to compress a pouch in a mock circulatory system. Geddes LA, Badylak SF, Tacker WA, Janas W. J Thorac Cardiovasc Surg; 1992 Nov; 104(5):1435-42. PubMed ID: 1434727 [Abstract] [Full Text] [Related] Page: [Next] [New Search]