These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


130 related items for PubMed ID: 8558432

  • 1. Metabolism of 3-methylindole by vaccinia-expressed P450 enzymes: correlation of 3-methyleneindolenine formation and protein-binding.
    Thornton-Manning J, Appleton ML, Gonzalez FJ, Yost GS.
    J Pharmacol Exp Ther; 1996 Jan; 276(1):21-9. PubMed ID: 8558432
    [Abstract] [Full Text] [Related]

  • 2. Selective dehydrogenation/oxygenation of 3-methylindole by cytochrome p450 enzymes.
    Lanza DL, Yost GS.
    Drug Metab Dispos; 2001 Jul; 29(7):950-3. PubMed ID: 11408359
    [Abstract] [Full Text] [Related]

  • 3. Evidence supporting the formation of 2,3-epoxy-3-methylindoline: a reactive intermediate of the pneumotoxin 3-methylindole.
    Skordos KW, Skiles GL, Laycock JD, Lanza DL, Yost GS.
    Chem Res Toxicol; 1998 Jul; 11(7):741-9. PubMed ID: 9671536
    [Abstract] [Full Text] [Related]

  • 4. Metabolic activation of the pneumotoxin, 3-methylindole, by vaccinia-expressed cytochrome P450s.
    Thornton-Manning JR, Ruangyuttikarn W, Gonzalez FJ, Yost GS.
    Biochem Biophys Res Commun; 1991 Nov 27; 181(1):100-7. PubMed ID: 1958177
    [Abstract] [Full Text] [Related]

  • 5. Specific dehydrogenation of 3-methylindole and epoxidation of naphthalene by recombinant human CYP2F1 expressed in lymphoblastoid cells.
    Lanza DL, Code E, Crespi CL, Gonzalez FJ, Yost GS.
    Drug Metab Dispos; 1999 Jul 27; 27(7):798-803. PubMed ID: 10383923
    [Abstract] [Full Text] [Related]

  • 6. Metabolism and bioactivation of 3-methylindole by human liver microsomes.
    Yan Z, Easterwood LM, Maher N, Torres R, Huebert N, Yost GS.
    Chem Res Toxicol; 2007 Jan 27; 20(1):140-8. PubMed ID: 17226936
    [Abstract] [Full Text] [Related]

  • 7. Mechanistic studies on the cytochrome P450-catalyzed dehydrogenation of 3-methylindole.
    Skiles GL, Yost GS.
    Chem Res Toxicol; 1996 Jan 27; 9(1):291-7. PubMed ID: 8924606
    [Abstract] [Full Text] [Related]

  • 8. Thioether adducts of a new imine reactive intermediate of the pneumotoxin 3-methylindole.
    Skordos KW, Laycock JD, Yost GS.
    Chem Res Toxicol; 1998 Nov 27; 11(11):1326-31. PubMed ID: 9815193
    [Abstract] [Full Text] [Related]

  • 9. Inhibition of 3-methylindole bioactivation by the cytochrome P-450 suicide substrates 1-aminobenzotriazole and alpha-methylbenzylaminobenzotriazole.
    Huijzer JC, Adams JD, Jaw JY, Yost GS.
    Drug Metab Dispos; 1989 Nov 27; 17(1):37-42. PubMed ID: 2566467
    [Abstract] [Full Text] [Related]

  • 10. Metabolism and bioactivation of 3-methylindole by Clara cells, alveolar macrophages, and subcellular fractions from rabbit lungs.
    Thornton-Manning JR, Nichols WK, Manning BW, Skiles GL, Yost GS.
    Toxicol Appl Pharmacol; 1993 Oct 27; 122(2):182-90. PubMed ID: 8212000
    [Abstract] [Full Text] [Related]

  • 11. Bioactivation of isothiazoles: minimizing the risk of potential toxicity in drug discovery.
    Teffera Y, Choquette D, Liu J, Colletti AE, Hollis LS, Lin MH, Zhao Z.
    Chem Res Toxicol; 2010 Nov 15; 23(11):1743-52. PubMed ID: 20825217
    [Abstract] [Full Text] [Related]

  • 12. Porcine CYP2A19, CYP2E1 and CYP1A2 forms are responsible for skatole biotransformation in the reconstituted system.
    Matal J, Matuskova Z, Tunkova A, Anzenbacherova E, Anzenbacher P.
    Neuro Endocrinol Lett; 2009 Nov 15; 30 Suppl 1():36-40. PubMed ID: 20027142
    [Abstract] [Full Text] [Related]

  • 13. Respective roles of CYP2A5 and CYP2F2 in the bioactivation of 3-methylindole in mouse olfactory mucosa and lung: studies using Cyp2a5-null and Cyp2f2-null mouse models.
    Zhou X, D'Agostino J, Li L, Moore CD, Yost GS, Ding X.
    Drug Metab Dispos; 2012 Apr 15; 40(4):642-7. PubMed ID: 22228748
    [Abstract] [Full Text] [Related]

  • 14. Differences in cytochrome P450-mediated biotransformation of 1,2-dichlorobenzene by rat and man: implications for human risk assessment.
    Hissink AM, Oudshoorn MJ, Van Ommen B, Haenen GR, Van Bladeren PJ.
    Chem Res Toxicol; 1996 Dec 15; 9(8):1249-56. PubMed ID: 8951226
    [Abstract] [Full Text] [Related]

  • 15. Specificity of cDNA-expressed human and rodent cytochrome P450s in the oxidative metabolism of the potent carcinogen 7,12-dimethylbenz[a]anthracene.
    Shou M, Korzekwa KR, Krausz KW, Buters JT, Grogan J, Goldfarb I, Hardwick JP, Gonzalez FJ, Gelboin HV.
    Mol Carcinog; 1996 Dec 15; 17(4):241-9. PubMed ID: 8989918
    [Abstract] [Full Text] [Related]

  • 16. Bioactivation of phenytoin by human cytochrome P450: characterization of the mechanism and targets of covalent adduct formation.
    Munns AJ, De Voss JJ, Hooper WD, Dickinson RG, Gillam EM.
    Chem Res Toxicol; 1997 Sep 15; 10(9):1049-58. PubMed ID: 9305589
    [Abstract] [Full Text] [Related]

  • 17. Protein covalent binding of maxipost through a cytochrome P450-mediated ortho-quinone methide intermediate in rats.
    Zhang D, Ogan M, Gedamke R, Roongta V, Dai R, Zhu M, Rinehart JK, Klunk L, Mitroka J.
    Drug Metab Dispos; 2003 Jul 15; 31(7):837-45. PubMed ID: 12814959
    [Abstract] [Full Text] [Related]

  • 18. Metabolic activation of diclofenac by human cytochrome P450 3A4: role of 5-hydroxydiclofenac.
    Shen S, Marchick MR, Davis MR, Doss GA, Pohl LR.
    Chem Res Toxicol; 1999 Feb 15; 12(2):214-22. PubMed ID: 10027801
    [Abstract] [Full Text] [Related]

  • 19. Cloning and expression of CYP2F3, a cytochrome P450 that bioactivates the selective pneumotoxins 3-methylindole and naphthalene.
    Wang H, Lanza DL, Yost GS.
    Arch Biochem Biophys; 1998 Jan 15; 349(2):329-40. PubMed ID: 9448722
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.