These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
190 related items for PubMed ID: 856270
1. Polyol permeability of the human red cell. Interpretation of glucose transport in terms of a pore. Bowman RJ, Lwitt DG. Biochim Biophys Acta; 1977 Apr 01; 466(1):68-83. PubMed ID: 856270 [Abstract] [Full Text] [Related]
2. The binding and translocation steps in transport as related to substrate structure. A study of the choline carrier of erythrocytes. Devés R, Krupka RM. Biochim Biophys Acta; 1979 Nov 02; 557(2):469-85. PubMed ID: 497194 [Abstract] [Full Text] [Related]
3. Gas chromatographic separation and mass spectrometric identification of polyols in human cerebrospinal fluid and plasma. Servo C, Palo J, Pitkänen E. Acta Neurol Scand; 1977 Aug 02; 56(2):104-10. PubMed ID: 899714 [Abstract] [Full Text] [Related]
4. Stimulation of the gerbil's gustatory receptors by polyols. Jakinovich W, Oakley B. Brain Res; 1976 Jul 16; 110(3):505-13. PubMed ID: 947470 [Abstract] [Full Text] [Related]
5. Dietary xylitol, sorbitol and D-mannitol but not erythritol retard bone resorption in rats. Mattila PT, Svanberg MJ, Mäkinen KK, Knuuttila ML. J Nutr; 1996 Jul 16; 126(7):1865-70. PubMed ID: 8683349 [Abstract] [Full Text] [Related]
6. The effects of polyols on the thermal stability of calf thymus DNA. Del Vecchio P, Esposito D, Ricchi L, Barone G. Int J Biol Macromol; 1999 May 16; 24(4):361-9. PubMed ID: 10408643 [Abstract] [Full Text] [Related]
7. Structural requirements for binding to the sugar-transport system of the human erythrocyte. Barnett JE, Holman GD, Munday KA. Biochem J; 1973 Feb 16; 131(2):211-21. PubMed ID: 4722437 [Abstract] [Full Text] [Related]
8. An allosteric pore model for sugar transport in human erythrocytes. Holman GD. Biochim Biophys Acta; 1980 Jun 20; 599(1):202-13. PubMed ID: 7397148 [Abstract] [Full Text] [Related]
9. Determination of polyols in serum by selected ion monitoring. Roboz J, Kappatos DC, Greaves J, Holland JF. Clin Chem; 1984 Oct 20; 30(10):1611-5. PubMed ID: 6434200 [Abstract] [Full Text] [Related]
10. A high affinity site for sugar transport at the inner face of the human erythrocyte membrane? Foster DM, Jacquez JA, Lieb WR, Stein WD. Biochim Biophys Acta; 1979 Aug 07; 555(2):349-51. PubMed ID: 476109 [Abstract] [Full Text] [Related]
12. The placental transfer of hexoses and polyols in the guinea-pig, as shown by umbilical perfusion of the placenta. Ely PA. J Physiol; 1966 May 07; 184(2):255-71. PubMed ID: 5950851 [Abstract] [Full Text] [Related]
14. An experimental test for cyclic versus linear transport models. The mechanisms of glucose and choline transport in erythrocytes. Krupka RM, Devés R. J Biol Chem; 1981 Jun 10; 256(11):5410-6. PubMed ID: 7240146 [Abstract] [Full Text] [Related]
15. Asymmetrical binding of phloretin to the glucose transport system of human erythrocytes. Krupka RM. J Membr Biol; 1985 Jun 10; 83(1-2):71-80. PubMed ID: 4039758 [Abstract] [Full Text] [Related]
16. Human erythrocyte sugar transport is incompatible with available carrier models. Cloherty EK, Heard KS, Carruthers A. Biochemistry; 1996 Aug 13; 35(32):10411-21. PubMed ID: 8756697 [Abstract] [Full Text] [Related]
17. Evidence for two asymmetric conformational states in the human erythrocyte sugar-transport system. Barnett JE, Holman GD, Chalkley RA, Munday KA. Biochem J; 1975 Mar 13; 145(3):417-29. PubMed ID: 1156368 [Abstract] [Full Text] [Related]
18. L-Leucine transport in human red blood cells: a detailed kinetic analysis. Rosenberg R. J Membr Biol; 1981 Mar 13; 62(1-2):79-93. PubMed ID: 7277478 [Abstract] [Full Text] [Related]
19. Glucose transport carrier of human erythrocytes. Radiation target size measurement based on flux inactivation. Cuppoletti J, Jung CY, Green FA. J Biol Chem; 1981 Feb 10; 256(3):1305-6. PubMed ID: 7192711 [Abstract] [Full Text] [Related]
20. Inhibition of anion and glucose permeabilities by anesthetics in erythrocytes. The mechanisms of action of positively and negatively charged drugs. Motais R, Baroin A, Motais A, Baldy S. Biochim Biophys Acta; 1980 Jul 10; 599(2):673-88. PubMed ID: 6105880 [Abstract] [Full Text] [Related] Page: [Next] [New Search]