These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


97 related items for PubMed ID: 8567189

  • 1. A new clustering system for protein sequences and its application to constraints discovery in protein evolution.
    Nakagawa H, Koyama Y, Kawai T, Okada T.
    Int J Pept Protein Res; 1995 Nov; 46(5):440-51. PubMed ID: 8567189
    [Abstract] [Full Text] [Related]

  • 2. On the quality of tree-based protein classification.
    Lazareva-Ulitsky B, Diemer K, Thomas PD.
    Bioinformatics; 2005 May 01; 21(9):1876-90. PubMed ID: 15647305
    [Abstract] [Full Text] [Related]

  • 3. Self-organizing tree-growing network for the classification of protein sequences.
    Wang HC, Dopazo J, de la Fraga LG, Zhu YP, Carazo JM.
    Protein Sci; 1998 Dec 01; 7(12):2613-22. PubMed ID: 9865956
    [Abstract] [Full Text] [Related]

  • 4. A novel graphical representation of protein sequences and its application.
    Liao B, Liao B, Lu X, Cao Z.
    J Comput Chem; 2011 Sep 01; 32(12):2539-44. PubMed ID: 21638292
    [Abstract] [Full Text] [Related]

  • 5. A new similarity measure among protein sequences.
    Wu KP, Lin HN, Sung TY, Hsu WL.
    Proc IEEE Comput Soc Bioinform Conf; 2003 Sep 01; 2():347-52. PubMed ID: 16452810
    [Abstract] [Full Text] [Related]

  • 6. An alternative to the accepted phylogeny of purple bacteria based on 16S rRNA: analyses of the amino acid sequences of cytochromes C2 and C556 from Rhodobacter (Rhodovulum) sulfidophilus.
    Ambler RP, Meyer TE, Bartsch RG, Cusanovich MA.
    Arch Biochem Biophys; 2001 Apr 01; 388(1):25-33. PubMed ID: 11361136
    [Abstract] [Full Text] [Related]

  • 7. Independence divergence-generated binary trees of amino acids.
    Tusnády GE, Tusnády G, Simon I.
    Protein Eng; 1995 May 01; 8(5):417-23. PubMed ID: 8532662
    [Abstract] [Full Text] [Related]

  • 8. Amino-acid sequence of the cytochrome c3 (M(r) 26,000) from Desulfovibrio desulfuricans Norway and a comparison with those of the other polyhemic cytochromes from Desulfovibrio.
    Bruschi M, Leroy G, Guerlesquin F, Bonicel J.
    Biochim Biophys Acta; 1994 Mar 16; 1205(1):123-31. PubMed ID: 8142476
    [Abstract] [Full Text] [Related]

  • 9. Amino-acid sequence of cytochrome c-553 from Desulfovibrio desulfuricans Norway.
    Bruschi M, Woudstra M, Campese D, Bonicel J.
    Biochim Biophys Acta; 1993 Mar 05; 1162(1-2):89-92. PubMed ID: 8383535
    [Abstract] [Full Text] [Related]

  • 10. Protein folding and protein evolution: common folding nucleus in different subfamilies of c-type cytochromes?
    Ptitsyn OB.
    J Mol Biol; 1998 May 08; 278(3):655-66. PubMed ID: 9600846
    [Abstract] [Full Text] [Related]

  • 11. STRUCLA: a WWW meta-server for protein structure comparison and evolutionary classification.
    Sasin JM, Kurowski MA, Bujnicki JM.
    Bioinformatics; 2003 May 08; 19 Suppl 1():i252-4. PubMed ID: 12855467
    [Abstract] [Full Text] [Related]

  • 12. Taxonomic colouring of phylogenetic trees of protein sequences.
    Palidwor G, Reynaud EG, Andrade-Navarro MA.
    BMC Bioinformatics; 2006 Feb 17; 7():79. PubMed ID: 16503967
    [Abstract] [Full Text] [Related]

  • 13. PCBOST: Protein classification based on structural trees.
    Gordeev AB, Kargatov AM, Efimov AV.
    Biochem Biophys Res Commun; 2010 Jul 02; 397(3):470-1. PubMed ID: 20573601
    [Abstract] [Full Text] [Related]

  • 14. Building a biological space based on protein sequence similarities and biological ontologies.
    Kersey P, Lonsdale D, Mulder NJ, Petryszak R, Apweiler R.
    Comb Chem High Throughput Screen; 2008 Sep 02; 11(8):653-60. PubMed ID: 18795884
    [Abstract] [Full Text] [Related]

  • 15. Heterotachy, an important process of protein evolution.
    Lopez P, Casane D, Philippe H.
    Mol Biol Evol; 2002 Jan 02; 19(1):1-7. PubMed ID: 11752184
    [Abstract] [Full Text] [Related]

  • 16. Cytochrome c electronic structure characterization toward the analysis of electron transfer mechanism.
    Nakagawa H, Koyama Y, Okada T.
    J Biochem; 1994 May 02; 115(5):891-7. PubMed ID: 7961604
    [Abstract] [Full Text] [Related]

  • 17. Sequence conservation in families whose members have little or no sequence similarity: the four-helical cytokines and cytochromes.
    Hill EE, Morea V, Chothia C.
    J Mol Biol; 2002 Sep 06; 322(1):205-33. PubMed ID: 12215425
    [Abstract] [Full Text] [Related]

  • 18. Phylogenetic trees constructed from hydrophobicity values of protein sequences.
    Leunissen JA, de Jong WW.
    J Theor Biol; 1986 Mar 21; 119(2):189-96. PubMed ID: 3016413
    [Abstract] [Full Text] [Related]

  • 19. Principal component analysis to detect the similarity of distantly related proteins; its application to cytochromes c, c1 and f.
    Horimoto K, Suzuki H, Otsuka J.
    Protein Seq Data Anal; 1991 Jul 21; 4(1):33-42. PubMed ID: 1656430
    [Abstract] [Full Text] [Related]

  • 20. Antibody-specific model of amino acid substitution for immunological inferences from alignments of antibody sequences.
    Mirsky A, Kazandjian L, Anisimova M.
    Mol Biol Evol; 2015 Mar 21; 32(3):806-19. PubMed ID: 25534034
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 5.