These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


218 related items for PubMed ID: 8569437

  • 1. Changes in linoleic acid metabolism and membrane fatty acids of LLC-PK cells in culture induced by 5 alpha-cholestane-3 beta,5,6 beta-triol.
    Mahfouz M, Smith T, Kummerow FA.
    Lipids; 1995 Nov; 30(11):977-85. PubMed ID: 8569437
    [Abstract] [Full Text] [Related]

  • 2. Cholestane-3 beta, 5 alpha, 6 beta-triol stimulates phospholipid synthesis and CTP-phosphocholine cytidyltransferase in cultured LLC-PK cells.
    Mahfouz MM, Smith TL, Zhou Q, Kummerow FA.
    Int J Biochem Cell Biol; 1996 Jul; 28(7):739-50. PubMed ID: 8925405
    [Abstract] [Full Text] [Related]

  • 3. Changes of linoleic acid metabolism and cellular phospholipid fatty acid composition in LLC-PK cells cultured at low magnesium concentrations.
    Mahfouz MM, Smith TL, Kummerow FA.
    Biochim Biophys Acta; 1989 Nov 06; 1006(1):70-4. PubMed ID: 2804072
    [Abstract] [Full Text] [Related]

  • 4. Linoleic acid metabolism in metastatic and nonmetastatic murine mammary tumor cells.
    Chapkin RS, Hubbard NE, Buckman DK, Erickson KL.
    Cancer Res; 1989 Sep 01; 49(17):4724-8. PubMed ID: 2503244
    [Abstract] [Full Text] [Related]

  • 5. Effect of fatty acids of omega 6 series on the biosynthesis of arachidonic acid in HTC cells.
    de Alaniz MJ, de Gómez Dumm IN, Brenner RR.
    Mol Cell Biochem; 1984 Sep 01; 64(1):31-7. PubMed ID: 6092909
    [Abstract] [Full Text] [Related]

  • 6. Inability of murine peritoneal macrophages to convert linoleic acid into arachidonic acid. Evidence of chain elongation.
    Chapkin RS, Somers SD, Erickson KL.
    J Immunol; 1988 Apr 01; 140(7):2350-5. PubMed ID: 3127464
    [Abstract] [Full Text] [Related]

  • 7. Helicobacter pylori alters n-6 fatty acid metabolism and prostaglandin E2 synthesis in rat gastric mucosal cells.
    Nakaya A, Wakabayashi H, Imamura L, Fukuta K, Makimoto S, Naganuma K, Orihara T, Minemura M, Shimizu Y, Nagasawa T, Hamazaki T, Watanabe A.
    J Gastroenterol Hepatol; 2001 Nov 01; 16(11):1197-205. PubMed ID: 11903735
    [Abstract] [Full Text] [Related]

  • 8. Utilization of extracellular lipids by HT29/219 cancer cells in culture.
    Pazouki S, Baty JD, Wallace HM, Coleman CS.
    Lipids; 1992 Nov 01; 27(11):827-34. PubMed ID: 1362791
    [Abstract] [Full Text] [Related]

  • 9. Elongation predominates over desaturation in the metabolism of 18:3n-3 and 20:5n-3 in turbot (Scophthalmus maximus) brain astroglial cells in primary culture.
    Tocher DR.
    Lipids; 1993 Apr 01; 28(4):267-72. PubMed ID: 8487617
    [Abstract] [Full Text] [Related]

  • 10. Effect of maternal dietary arachidonic or linoleic acid on rat pup fatty acid profiles.
    Lien EL, Boyle FG, Yuhas RJ, Kuhlman CF.
    Lipids; 1994 Jan 01; 29(1):53-9. PubMed ID: 8139396
    [Abstract] [Full Text] [Related]

  • 11. Effects of exogenous linoleic acid on fatty acid composition, receptor-mediated cAMP formation, and transport functions in rat astrocytes in primary culture.
    Murphy MG.
    Neurochem Res; 1995 Nov 01; 20(11):1365-75. PubMed ID: 8786824
    [Abstract] [Full Text] [Related]

  • 12. Preferential uptake of long chain polyunsaturated fatty acids by isolated human placental membranes.
    Campbell FM, Gordon MJ, Dutta-Roy AK.
    Mol Cell Biochem; 1996 Feb 09; 155(1):77-83. PubMed ID: 8717442
    [Abstract] [Full Text] [Related]

  • 13. Differences in the metabolism of 18:2n-6 and 18:3n-6 by the liver and kidney may explain the anti-hypertensive effect of 18:3n-6.
    Huang YS, Cantrill RC, DeMarco A, Campbell L, Lin X, Horrobin DF, Mills DE.
    Biochem Med Metab Biol; 1994 Feb 09; 51(1):27-34. PubMed ID: 7910749
    [Abstract] [Full Text] [Related]

  • 14. N-3 and n-6 fatty acid metabolism in undifferentiated and differentiated human intestine cell line (Caco-2).
    Huang YS, Liu JW, Koba K, Anderson SN.
    Mol Cell Biochem; 1995 Oct 18; 151(2):121-30. PubMed ID: 8569757
    [Abstract] [Full Text] [Related]

  • 15. Effect of dietary alpha-linolenic acid intake on incorporation of docosahexaenoic and arachidonic acids into plasma phospholipids of term infants.
    Sauerwald TU, Hachey DL, Jensen CL, Chen H, Anderson RE, Heird WC.
    Lipids; 1996 Mar 18; 31 Suppl():S131-5. PubMed ID: 8729107
    [Abstract] [Full Text] [Related]

  • 16. Polyunsaturated fatty acid biosynthesis from [1-14C]20:3 n-6 acid in rat cultured Sertoli cells. Linoleic acid effect.
    Hurtado de Catalfo GE, de Gomez Dumm IN.
    Int J Biochem Cell Biol; 2002 May 18; 34(5):525-32. PubMed ID: 11906823
    [Abstract] [Full Text] [Related]

  • 17. Polyunsaturated fatty acid metabolism of human skin fibroblasts during cellular aging.
    Raederstorff D, Loechleiter V, Moser U.
    Int J Vitam Nutr Res; 1995 May 18; 65(1):51-5. PubMed ID: 7657482
    [Abstract] [Full Text] [Related]

  • 18. Brugia malayi: microfilarial polyunsaturated fatty acid composition and synthesis.
    Liu LX, Weller PF.
    Exp Parasitol; 1989 Aug 18; 69(2):198-203. PubMed ID: 2502426
    [Abstract] [Full Text] [Related]

  • 19. Incorporation of linoleic and arachidonic acids into ovine placental phospholipids in vitro.
    Shand JH, Noble RC.
    Biol Neonate; 1985 Aug 18; 48(5):299-306. PubMed ID: 3933581
    [Abstract] [Full Text] [Related]

  • 20. Ultrastructure and fatty acid composition of fatty acid-modified Morris 7777 hepatoma cells.
    Abbas MK, Yoo TJ, Viles J.
    Cancer Res; 1982 Nov 18; 42(11):4639-49. PubMed ID: 6812950
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.