These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Identification of residues in monoclonal antibody NC10.8 that bind to the sweetener N-(p-cyanophenyl)-N'-(diphenylmethyl)guanidinoacetic acid by using radioligand binding, absorption and fluorescence spectroscopy, computer-aided molecular modeling, and site-directed mutagenesis. Anchin JM, Droupadi PR, DuBois GE, Kellogg MS, Nagarajan S, Carter JS, Linthicum DS. J Immunol; 1994 Oct 01; 153(7):3059-69. PubMed ID: 8089487 [Abstract] [Full Text] [Related]
6. Spectrofluorimetric study of the intermolecular complexation of monoclonal antibodies with the high potency sweetener N-(p-cyanophenyl)-N'-(diphenylmethyl) guanidineacetic acid. Droupadi PR, Anchin JM, Meyers EA, Linthicum DS. J Mol Recognit; 1992 Dec 01; 5(4):173-9. PubMed ID: 1339485 [Abstract] [Full Text] [Related]
7. Molecular probes for sweeteners: immunorecognition of superpotent guanidinium compounds. Carpenter R, Anchin JM, Linthicum DS. Hybridoma; 1996 Feb 01; 15(1):17-21. PubMed ID: 9064282 [Abstract] [Full Text] [Related]
8. Structural predictions of the binding site architecture for monoclonal antibody NC6.8 using computer-aided molecular modeling, ligand binding, and spectroscopy. Viswanathan M, Anchin JM, Droupadi PR, Mandal C, Linthicum DS, Subramaniam S. Biophys J; 1995 Sep 01; 69(3):741-53. PubMed ID: 8519975 [Abstract] [Full Text] [Related]
9. The three-dimensional structure of a complex of a murine Fab (NC10. 14) with a potent sweetener (NC174): an illustration of structural diversity in antigen recognition by immunoglobulins. Guddat LW, Shan L, Broomell C, Ramsland PA, Fan Z, Anchin JM, Linthicum DS, Edmundson AB. J Mol Biol; 2000 Sep 29; 302(4):853-72. PubMed ID: 10993728 [Abstract] [Full Text] [Related]
11. Cocrystal structures of NC6.8 Fab identify key interactions for high potency sweetener recognition: implications for the design of synthetic sweeteners. Gokulan K, Khare S, Ronning DR, Linthicum SD, Sacchettini JC, Rupp B. Biochemistry; 2005 Jul 26; 44(29):9889-98. PubMed ID: 16026161 [Abstract] [Full Text] [Related]
12. Modeling the structure of the combining site of an antisweet taste ligand monoclonal antibody NC10.14. Viswanathan M, Subramaniam S, Pledger DW, Tetin SY, Linthicum DS. Biopolymers; 1996 Sep 26; 39(3):395-406. PubMed ID: 8756519 [Abstract] [Full Text] [Related]
14. Absorption spectroscopy of the complexation between superpotent guanidinium sweeteners and specific monoclonal antibodies. Droupadi PR, Linthicum DS. Int J Biochem Cell Biol; 1995 Apr 26; 27(4):351-7. PubMed ID: 7788557 [Abstract] [Full Text] [Related]
16. Molecular modeling of cardiac glycoside binding by the human sequence monoclonal antibody 1B3. Paula S, Monson N, Ball WJ. Proteins; 2005 Aug 15; 60(3):382-91. PubMed ID: 15971203 [Abstract] [Full Text] [Related]
17. Analysis of the binding of the Fab fragment of monoclonal antibody NC10 to influenza virus N9 neuraminidase from tern and whale using the BIAcore biosensor: effect of immobilization level and flow rate on kinetic analysis. Kortt AA, Nice E, Gruen LC. Anal Biochem; 1999 Aug 15; 273(1):133-41. PubMed ID: 10452809 [Abstract] [Full Text] [Related]
18. Analysis of correlated motion in antibody combining sites from molecular dynamics simulations. Viswanathan M, Linthicum DS, Subramaniam S. Methods; 2000 Mar 15; 20(3):362-71. PubMed ID: 10694457 [Abstract] [Full Text] [Related]
19. Identification of important residues in metal-chelate recognition by monoclonal antibodies. Delehanty JB, Jones RM, Bishop TC, Blake DA. Biochemistry; 2003 Dec 09; 42(48):14173-83. PubMed ID: 14640685 [Abstract] [Full Text] [Related]