These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
128 related items for PubMed ID: 8574686
1. Muscarinic receptor agonist-induced increases in cytosolic Ca2+ concentrations in chick ciliary ganglion cells. Sorimachi M, Furukawa K, Abe Y, Akaike N. Brain Res; 1995 Oct 23; 696(1-2):67-75. PubMed ID: 8574686 [Abstract] [Full Text] [Related]
2. Pharmacology of nicotine-induced increase in cytosolic Ca2+ concentrations in chick embryo ciliary ganglion cells. Sorimachi M. Brain Res; 1995 Jan 09; 669(1):26-34. PubMed ID: 7536102 [Abstract] [Full Text] [Related]
3. Mechanism underlying the ATP-induced increase in the cytosolic Ca2+ concentration in chick ciliary ganglion neurons. Sorimachi M, Abe Y, Furukawa K, Akaike N. J Neurochem; 1995 Mar 09; 64(3):1169-74. PubMed ID: 7861148 [Abstract] [Full Text] [Related]
4. Caffeine- and muscarinic receptor agonist-sensitive Ca2+ stores in chick ciliary ganglion cells. Sorimachi M. Brain Res; 1993 Nov 05; 627(1):34-40. PubMed ID: 8293302 [Abstract] [Full Text] [Related]
5. Mechanisms of GABA- and glycine-induced increases of cytosolic Ca2+ concentrations in chick embryo ciliary ganglion cells. Sorimachi M, Rhee JS, Shimura M, Akaike N. J Neurochem; 1997 Aug 05; 69(2):797-805. PubMed ID: 9231741 [Abstract] [Full Text] [Related]
6. Involvement of Ca2+ entry and inositol trisphosphate-induced internal Ca2+ mobilization in muscarinic receptor-mediated catecholamine release in dog adrenal chromaffin cells. Ohtsuki H, Morita K, Minami N, Suemitsu T, Tsujimoto A, Dohi T. Neurochem Int; 1992 Sep 05; 21(2):259-67. PubMed ID: 1363867 [Abstract] [Full Text] [Related]
7. Characteristics of cytosolic Ca2+ elevation induced by muscarinic receptor activation in single adrenal chromaffin cells of the guinea pig. Ohta T, Asano T, Ito S, Kitamura N, Nakazato Y. Cell Calcium; 1996 Sep 05; 20(3):303-14. PubMed ID: 8894277 [Abstract] [Full Text] [Related]
8. Muscarinic calcium mobilization in the regenerating retina of adult newt. Ohmasa M, Saito T. Brain Res Dev Brain Res; 2003 Oct 10; 145(1):61-9. PubMed ID: 14519494 [Abstract] [Full Text] [Related]
9. Rapid increase in cytosolic calcium ion concentration mediated by acetylcholine receptors in cultured retinal neurons and Müller cells. Wakakura M, Utsunomiya-Kawasaki I, Ishikawa S. Graefes Arch Clin Exp Ophthalmol; 1998 Dec 10; 236(12):934-9. PubMed ID: 9865625 [Abstract] [Full Text] [Related]
10. M3-like muscarinic receptors mediate Ca2+ influx in rat mesencephalic GABAergic neurones through a protein kinase C-dependent mechanism. Michel FJ, Fortin GD, Martel P, Yeomans J, Trudeau LE. Neuropharmacology; 2005 May 10; 48(6):796-809. PubMed ID: 15829252 [Abstract] [Full Text] [Related]
11. Ca2+-dependent K+ currents induced by muscarinic receptor activation in guinea pig adrenal chromaffin cells. Ohta T, Ito S, Nakazato Y. J Neurochem; 1998 Mar 10; 70(3):1280-8. PubMed ID: 9489751 [Abstract] [Full Text] [Related]
12. Muscarinic signaling pathway for calcium release and calcium-activated chloride current in smooth muscle. Wang YX, Kotlikoff MI. Am J Physiol; 1997 Aug 10; 273(2 Pt 1):C509-19. PubMed ID: 9277348 [Abstract] [Full Text] [Related]
13. Muscarinic (M1) receptor-mediated inhibition of K(+)-evoked [3H]-noradrenaline release from human neuroblastoma (SH-SY5Y) cells via inhibition of L- and N-type Ca2+ channels. McDonald RL, Vaughan PF, Peers C. Br J Pharmacol; 1994 Oct 10; 113(2):621-7. PubMed ID: 7834216 [Abstract] [Full Text] [Related]
14. Functional dependence of Ca(2+)-activated K+ current on L- and N-type Ca2+ channels: differences between chicken sympathetic and parasympathetic neurons suggest different regulatory mechanisms. Wisgirda ME, Dryer SE. Proc Natl Acad Sci U S A; 1994 Mar 29; 91(7):2858-62. PubMed ID: 8146200 [Abstract] [Full Text] [Related]
15. Pharmacological and functional characterization of muscarinic receptors in the frog pars intermedia. Garnier M, Lamacz M, Galas L, Lenglet S, Tonon MC, Vaudry H. Endocrinology; 1998 Aug 29; 139(8):3525-33. PubMed ID: 9681504 [Abstract] [Full Text] [Related]
16. Three distinct Ca(2+) influx pathways couple acetylcholine receptor activation to catecholamine secretion from PC12 cells. Taylor SC, Peers C. J Neurochem; 2000 Oct 29; 75(4):1583-9. PubMed ID: 10987839 [Abstract] [Full Text] [Related]
17. The role of N-, Q- and R-type Ca2+ channels in feedback inhibition of ACh release from rat basal forebrain neurones. Allen TG. J Physiol; 1999 Feb 15; 515 ( Pt 1)(Pt 1):93-107. PubMed ID: 9925881 [Abstract] [Full Text] [Related]
18. Muscarinic Ca2+ responses resistant to muscarinic antagonists at perisynaptic Schwann cells of the frog neuromuscular junction. Robitaille R, Jahromi BS, Charlton MP. J Physiol; 1997 Oct 15; 504 ( Pt 2)(Pt 2):337-47. PubMed ID: 9365908 [Abstract] [Full Text] [Related]
19. M4 muscarinic receptor activation modulates calcium channel currents in rat intracardiac neurons. Cuevas J, Adams DJ. J Neurophysiol; 1997 Oct 15; 78(4):1903-12. PubMed ID: 9325359 [Abstract] [Full Text] [Related]
20. Muscarinic M1 receptors activate phosphoinositide turnover and Ca2+ mobilisation in rat sympathetic neurones, but this signalling pathway does not mediate M-current inhibition. del Río E, Bevilacqua JA, Marsh SJ, Halley P, Caulfield MP. J Physiol; 1999 Oct 01; 520 Pt 1(Pt 1):101-11. PubMed ID: 10517804 [Abstract] [Full Text] [Related] Page: [Next] [New Search]