These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
98 related items for PubMed ID: 8576913
1. An approach to rapid estimation of relative binding affinities of enzyme inhibitors: application to peptidomimetic inhibitors of the human immunodeficiency virus type 1 protease. Viswanadhan VN, Reddy MR, Wlodawer A, Varney MD, Weinstein JN. J Med Chem; 1996 Feb 02; 39(3):705-12. PubMed ID: 8576913 [Abstract] [Full Text] [Related]
2. Coarse-grained molecular dynamics of ligands binding into protein: The case of HIV-1 protease inhibitors. Li D, Liu MS, Ji B, Hwang K, Huang Y. J Chem Phys; 2009 Jun 07; 130(21):215102. PubMed ID: 19508101 [Abstract] [Full Text] [Related]
3. Automated molecular simulation based binding affinity calculator for ligand-bound HIV-1 proteases. Sadiq SK, Wright D, Watson SJ, Zasada SJ, Stoica I, Coveney PV. J Chem Inf Model; 2008 Sep 07; 48(9):1909-19. PubMed ID: 18710212 [Abstract] [Full Text] [Related]
4. Comparative binding energy analysis of HIV-1 protease inhibitors: incorporation of solvent effects and validation as a powerful tool in receptor-based drug design. Pérez C, Pastor M, Ortiz AR, Gago F. J Med Chem; 1998 Mar 12; 41(6):836-52. PubMed ID: 9526559 [Abstract] [Full Text] [Related]
5. Rational design of inhibitors for drug-resistant HIV-1 aspartic protease mutants. Frecer V, Miertus S, Tossi A, Romeo D. Drug Des Discov; 1998 Oct 12; 15(4):211-31. PubMed ID: 10546067 [Abstract] [Full Text] [Related]
6. Accurate prediction of protonation state as a prerequisite for reliable MM-PB(GB)SA binding free energy calculations of HIV-1 protease inhibitors. Wittayanarakul K, Hannongbua S, Feig M. J Comput Chem; 2008 Apr 15; 29(5):673-85. PubMed ID: 17849388 [Abstract] [Full Text] [Related]
7. Efficiency of a second-generation HIV-1 protease inhibitor studied by molecular dynamics and absolute binding free energy calculations. Lepsík M, Kríz Z, Havlas Z. Proteins; 2004 Nov 01; 57(2):279-93. PubMed ID: 15340915 [Abstract] [Full Text] [Related]
8. A detailed comparison of current docking and scoring methods on systems of pharmaceutical relevance. Perola E, Walters WP, Charifson PS. Proteins; 2004 Aug 01; 56(2):235-49. PubMed ID: 15211508 [Abstract] [Full Text] [Related]
9. Three-dimensional quantitative structure-activity relationship study on cyclic urea derivatives as HIV-1 protease inhibitors: application of comparative molecular field analysis. Debnath AK. J Med Chem; 1999 Jan 28; 42(2):249-59. PubMed ID: 9925730 [Abstract] [Full Text] [Related]
10. Nonpeptide cyclic cyanoguanidines as HIV-1 protease inhibitors: synthesis, structure-activity relationships, and X-ray crystal structure studies. Jadhav PK, Woerner FJ, Lam PY, Hodge CN, Eyermann CJ, Man HW, Daneker WF, Bacheler LT, Rayner MM, Meek JL, Erickson-Viitanen S, Jackson DA, Calabrese JC, Schadt M, Chang CH. J Med Chem; 1998 Apr 23; 41(9):1446-55. PubMed ID: 9554878 [Abstract] [Full Text] [Related]
11. Empirical free energy calculations of human immunodeficiency virus type 1 protease crystallographic complexes. II. Knowledge-based ligand-protein interaction potentials applied to thermodynamic analysis of hydrophobic mutations. Verkhivker GM. Pac Symp Biocomput; 1996 Apr 23; ():638-52. PubMed ID: 9390264 [Abstract] [Full Text] [Related]
12. X-ray structure and conformational dynamics of the HIV-1 protease in complex with the inhibitor SDZ283-910: agreement of time-resolved spectroscopy and molecular dynamics simulations. Ringhofer S, Kallen J, Dutzler R, Billich A, Visser AJ, Scholz D, Steinhauser O, Schreiber H, Auer M, Kungl AJ. J Mol Biol; 1999 Mar 05; 286(4):1147-59. PubMed ID: 10047488 [Abstract] [Full Text] [Related]
13. Molecular dynamics study of the connection between flap closing and binding of fullerene-based inhibitors of the HIV-1 protease. Zhu Z, Schuster DI, Tuckerman ME. Biochemistry; 2003 Feb 11; 42(5):1326-33. PubMed ID: 12564936 [Abstract] [Full Text] [Related]
14. Targeting the open-flap conformation of HIV-1 protease with pyrrolidine-based inhibitors. Böttcher J, Blum A, Dörr S, Heine A, Diederich WE, Klebe G. ChemMedChem; 2008 Sep 11; 3(9):1337-44. PubMed ID: 18720485 [Abstract] [Full Text] [Related]
15. Improved structure-activity relationship analysis of HIV-1 protease inhibitors using interaction kinetic data. Shuman CF, Vrang L, Danielson UH. J Med Chem; 2004 Nov 18; 47(24):5953-61. PubMed ID: 15537350 [Abstract] [Full Text] [Related]
16. Optimization and computational evaluation of a series of potential active site inhibitors of the V82F/I84V drug-resistant mutant of HIV-1 protease: an application of the relaxed complex method of structure-based drug design. Perryman AL, Lin JH, Andrew McCammon J. Chem Biol Drug Des; 2006 May 18; 67(5):336-45. PubMed ID: 16784458 [Abstract] [Full Text] [Related]
17. Structure, dynamics and solvation of HIV-1 protease/saquinavir complex in aqueous solution and their contributions to drug resistance: molecular dynamic simulations. Wittayanarakul K, Aruksakunwong O, Sompornpisut P, Sanghiran-Lee V, Parasuk V, Pinitglang S, Hannongbua S. J Chem Inf Model; 2005 May 18; 45(2):300-8. PubMed ID: 15807491 [Abstract] [Full Text] [Related]
18. Determination of interaction kinetic constants for HIV-1 protease inhibitors using optical biosensor technology. Markgren PO, Lindgren MT, Gertow K, Karlsson R, Hämäläinen M, Danielson UH. Anal Biochem; 2001 Apr 15; 291(2):207-18. PubMed ID: 11401294 [Abstract] [Full Text] [Related]
19. Computational design of novel fullerene analogues as potential HIV-1 PR inhibitors: Analysis of the binding interactions between fullerene inhibitors and HIV-1 PR residues using 3D QSAR, molecular docking and molecular dynamics simulations. Durdagi S, Mavromoustakos T, Chronakis N, Papadopoulos MG. Bioorg Med Chem; 2008 Dec 01; 16(23):9957-74. PubMed ID: 18996019 [Abstract] [Full Text] [Related]
20. Discovery of HIV-1 protease inhibitors with picomolar affinities incorporating N-aryl-oxazolidinone-5-carboxamides as novel P2 ligands. Ali A, Reddy GS, Cao H, Anjum SG, Nalam MN, Schiffer CA, Rana TM. J Med Chem; 2006 Dec 14; 49(25):7342-56. PubMed ID: 17149864 [Abstract] [Full Text] [Related] Page: [Next] [New Search]