These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


135 related items for PubMed ID: 8578764

  • 1. Fungal transformations of antihistamines: metabolism of brompheniramine, chlorpheniramine, and pheniramine to N-oxide and N-demethylated metabolites by the fungus Cunninghamella elegans.
    Hansen EB, Cho BP, Korfmacher WA, Cerniglia CE.
    Xenobiotica; 1995 Nov; 25(10):1081-92. PubMed ID: 8578764
    [Abstract] [Full Text] [Related]

  • 2. Fungal transformations of antihistamines: metabolism of cyproheptadine hydrochloride by Cunninghamella elegans.
    Zhang D, Hansen EB, Deck J, Heinze TM, Henderson A, Korfmacher WA, Cerniglia CE.
    Xenobiotica; 1997 Mar; 27(3):301-15. PubMed ID: 9141237
    [Abstract] [Full Text] [Related]

  • 3. Fungal transformations of antihistamines: metabolism of methapyrilene, thenyldiamine and tripelennamine to N-oxide and N-demethylated derivatives.
    Cerniglia CE, Hansen EB, Lambert KJ, Korfmacher WA, Miller DW.
    Xenobiotica; 1988 Mar; 18(3):301-12. PubMed ID: 2898181
    [Abstract] [Full Text] [Related]

  • 4. Urinary excretion of pheniramine and its N-demthylated metabolites in man--comparison with chlorpheniramine and brompheniramine data.
    Kabasakalian P, Taggart M, Townley E.
    J Pharm Sci; 1968 Apr; 57(4):621-3. PubMed ID: 4385103
    [No Abstract] [Full Text] [Related]

  • 5. Metabolism of the ethanolamine-type antihistamine diphenhydramine (Benadryl) by the fungus Cunninghamella elegans.
    Moody JD, Heinze TM, Hansen EB, Cerniglia CE.
    Appl Microbiol Biotechnol; 2000 Mar; 53(3):310-5. PubMed ID: 10772471
    [Abstract] [Full Text] [Related]

  • 6. Influence of partition coefficient on intestinal absorption of alkylamine antihistamines.
    Strahl NR, Lopez S.
    J Pharm Sci; 1978 Jul; 67(7):1041-2. PubMed ID: 660501
    [No Abstract] [Full Text] [Related]

  • 7. Biotransformation of amitriptyline by Cunninghamella elegans.
    Zhang D, Evans FE, Freeman JP, Duhart B, Cerniglia CE.
    Drug Metab Dispos; 1995 Dec; 23(12):1417-25. PubMed ID: 8689954
    [Abstract] [Full Text] [Related]

  • 8. Microbial transformation of the antihistamine pyrilamine maleate. Formation of potential mammalian metabolites.
    Hansen EB, Cerniglia CE, Korfmacher WA, Miller DW, Heflich RH.
    Drug Metab Dispos; 1987 Dec; 15(1):97-106. PubMed ID: 2881765
    [Abstract] [Full Text] [Related]

  • 9. Regio- and stereo-selective metabolism of 4-methylbenz[a]anthracene by the fungus Cunninghamella elegans.
    Cerniglia CE, Fu PP, Yang SK.
    Biochem J; 1983 Nov 15; 216(2):377-84. PubMed ID: 6661203
    [Abstract] [Full Text] [Related]

  • 10. Affinities of brompheniramine, chlorpheniramine, and terfenadine at the five human muscarinic cholinergic receptor subtypes.
    Yasuda SU, Yasuda RP.
    Pharmacotherapy; 1999 Apr 15; 19(4):447-51. PubMed ID: 10212017
    [Abstract] [Full Text] [Related]

  • 11. Fungal oxidation of 3-methylcholanthrene: formation of proximate carcinogenic metabolites of 3-methylcholanthrene.
    Cerniglia CE, Dodge RH, Gibson DT.
    Chem Biol Interact; 1982 Jan 15; 38(2):161-73. PubMed ID: 7055849
    [Abstract] [Full Text] [Related]

  • 12. Biotransformation of chlorpromazine and methdilazine by Cunninghamella elegans.
    Zhang D, Freeman JP, Sutherland JB, Walker AE, Yang Y, Cerniglia CE.
    Appl Environ Microbiol; 1996 Mar 15; 62(3):798-803. PubMed ID: 8975609
    [Abstract] [Full Text] [Related]

  • 13. Extra- and intracellular formation of reactive oxygen species by human neutrophils in the presence of pheniramine, chlorpheniramine and brompheniramine.
    Jancinová V, Drábiková K, Nosál' R, Holománová D.
    Neuro Endocrinol Lett; 2006 Dec 15; 27 Suppl 2():141-3. PubMed ID: 17159800
    [Abstract] [Full Text] [Related]

  • 14. Microbial models of mammalian metabolism. N-dealkylation of furosemide to yield the mammalian metabolite CSA using Cunninghamella elegans.
    Hezari M, Davis PJ.
    Drug Metab Dispos; 1992 Dec 15; 20(6):882-8. PubMed ID: 1362941
    [Abstract] [Full Text] [Related]

  • 15. Clinical pharmacokinetics of H1-receptor antagonists (the antihistamines).
    Paton DM, Webster DR.
    Clin Pharmacokinet; 1985 Dec 15; 10(6):477-97. PubMed ID: 2866055
    [Abstract] [Full Text] [Related]

  • 16. Fungal metabolism of nitrofluoranthenes.
    Pothuluri JV, Doerge DR, Churchwell MI, Fu PP, Cerniglia CE.
    J Toxicol Environ Health A; 1998 Jan 23; 53(2):153-74. PubMed ID: 9444318
    [Abstract] [Full Text] [Related]

  • 17. Biotransformation of doxepin by Cunninghamella elegans.
    Moody JD, Freeman JP, Cerniglia CE.
    Drug Metab Dispos; 1999 Oct 23; 27(10):1157-64. PubMed ID: 10497142
    [Abstract] [Full Text] [Related]

  • 18. Biotransformation of mirtazapine by Cunninghamella elegans.
    Moody JD, Freeman JP, Fu PP, Cerniglia CE.
    Drug Metab Dispos; 2002 Nov 23; 30(11):1274-9. PubMed ID: 12386135
    [Abstract] [Full Text] [Related]

  • 19. Biotransformation of tri-substituted methoxyamphetamines by Cunninghamella echinulata.
    Foster BC, McLeish J, Wilson DL, Whitehouse LW, Zamecnik J, Lodge BA.
    Xenobiotica; 1992 Dec 23; 22(12):1383-94. PubMed ID: 1494884
    [Abstract] [Full Text] [Related]

  • 20. Fungal metabolism of 3-nitrofluoranthene.
    Pothuluri JV, Evans FE, Heinze TM, Cerniglia CE.
    J Toxicol Environ Health; 1994 Jun 23; 42(2):209-18. PubMed ID: 8207756
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.