These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


1248 related items for PubMed ID: 8585712

  • 41. A Combination Fluorescence Assay Demonstrates Increased Efflux Pump Activity as a Resistance Mechanism in Azole-Resistant Vaginal Candida albicans Isolates.
    Bhattacharya S, Sobel JD, White TC.
    Antimicrob Agents Chemother; 2016 Oct; 60(10):5858-66. PubMed ID: 27431223
    [Abstract] [Full Text] [Related]

  • 42. Milbemycins: more than efflux inhibitors for fungal pathogens.
    Silva LV, Sanguinetti M, Vandeputte P, Torelli R, Rochat B, Sanglard D.
    Antimicrob Agents Chemother; 2013 Feb; 57(2):873-86. PubMed ID: 23208712
    [Abstract] [Full Text] [Related]

  • 43. Molecular aspects of fluconazole resistance development in Candida albicans.
    Franz R, Ruhnke M, Morschhäuser J.
    Mycoses; 1999 Feb; 42(7-8):453-8. PubMed ID: 10546486
    [Abstract] [Full Text] [Related]

  • 44. In vitro activity of caspofungin (MK-0991) against Candida albicans clinical isolates displaying different mechanisms of azole resistance.
    Bachmann SP, Patterson TF, López-Ribot JL.
    J Clin Microbiol; 2002 Jun; 40(6):2228-30. PubMed ID: 12037093
    [Abstract] [Full Text] [Related]

  • 45. Molecular mechanisms of drug resistance in clinical Candida species isolated from Tunisian hospitals.
    Eddouzi J, Parker JE, Vale-Silva LA, Coste A, Ischer F, Kelly S, Manai M, Sanglard D.
    Antimicrob Agents Chemother; 2013 Jul; 57(7):3182-93. PubMed ID: 23629718
    [Abstract] [Full Text] [Related]

  • 46. Genetic dissection of azole resistance mechanisms in Candida albicans and their validation in a mouse model of disseminated infection.
    MacCallum DM, Coste A, Ischer F, Jacobsen MD, Odds FC, Sanglard D.
    Antimicrob Agents Chemother; 2010 Apr; 54(4):1476-83. PubMed ID: 20086148
    [Abstract] [Full Text] [Related]

  • 47. Heterozygosity and functional allelic variation in the Candida albicans efflux pump genes CDR1 and CDR2.
    Holmes AR, Tsao S, Ong SW, Lamping E, Niimi K, Monk BC, Niimi M, Kaneko A, Holland BR, Schmid J, Cannon RD.
    Mol Microbiol; 2006 Oct; 62(1):170-86. PubMed ID: 16942600
    [Abstract] [Full Text] [Related]

  • 48. Induced expression of the Candida albicans multidrug resistance gene CDR1 in response to fluconazole and other antifungals.
    Hernáez ML, Gil C, Pla J, Nombela C.
    Yeast; 1998 Apr 30; 14(6):517-26. PubMed ID: 9605502
    [Abstract] [Full Text] [Related]

  • 49. Mechanism of fluconazole resistance in Candida albicans biofilms: phase-specific role of efflux pumps and membrane sterols.
    Mukherjee PK, Chandra J, Kuhn DM, Ghannoum MA.
    Infect Immun; 2003 Aug 30; 71(8):4333-40. PubMed ID: 12874310
    [Abstract] [Full Text] [Related]

  • 50. Mechanism of action of tetrandrine, a natural inhibitor of Candida albicans drug efflux pumps.
    Zhang H, Gao A, Li F, Zhang G, Ho HI, Liao W.
    Yakugaku Zasshi; 2009 May 30; 129(5):623-30. PubMed ID: 19420894
    [Abstract] [Full Text] [Related]

  • 51.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 52. Missense mutation in CgPDR1 regulator associated with azole-resistant Candida glabrata recovered from Thai oral candidiasis patients.
    Tantivitayakul P, Lapirattanakul J, Kaypetch R, Muadcheingka T.
    J Glob Antimicrob Resist; 2019 Jun 30; 17():221-226. PubMed ID: 30658200
    [Abstract] [Full Text] [Related]

  • 53. Distinct patterns of gene expression associated with development of fluconazole resistance in serial candida albicans isolates from human immunodeficiency virus-infected patients with oropharyngeal candidiasis.
    Lopez-Ribot JL, McAtee RK, Lee LN, Kirkpatrick WR, White TC, Sanglard D, Patterson TF.
    Antimicrob Agents Chemother; 1998 Nov 30; 42(11):2932-7. PubMed ID: 9797228
    [Abstract] [Full Text] [Related]

  • 54. Learning the ABC of oral fungal drug resistance.
    Cannon RD, Holmes AR.
    Mol Oral Microbiol; 2015 Dec 30; 30(6):425-37. PubMed ID: 26042641
    [Abstract] [Full Text] [Related]

  • 55. Inducible azole resistance associated with a heterogeneous phenotype in Candida albicans.
    Marr KA, Lyons CN, Ha K, Rustad TR, White TC.
    Antimicrob Agents Chemother; 2001 Jan 30; 45(1):52-9. PubMed ID: 11120944
    [Abstract] [Full Text] [Related]

  • 56. Multiple efflux mechanisms are involved in Candida albicans fluconazole resistance.
    Albertson GD, Niimi M, Cannon RD, Jenkinson HF.
    Antimicrob Agents Chemother; 1996 Dec 30; 40(12):2835-41. PubMed ID: 9124851
    [Abstract] [Full Text] [Related]

  • 57. Expression of the CDR1 efflux pump in clinical Candida albicans isolates is controlled by a negative regulatory element.
    Gaur NA, Manoharlal R, Saini P, Prasad T, Mukhopadhyay G, Hoefer M, Morschhäuser J, Prasad R.
    Biochem Biophys Res Commun; 2005 Jun 24; 332(1):206-14. PubMed ID: 15896319
    [Abstract] [Full Text] [Related]

  • 58. Development of a new real-time TaqMan PCR assay for quantitative analyses of Candida albicans resistance genes expression.
    Kofla G, Ruhnke M.
    J Microbiol Methods; 2007 Jan 24; 68(1):178-83. PubMed ID: 16945439
    [Abstract] [Full Text] [Related]

  • 59. Palmarumycin P3 Reverses Mrr1-Mediated Azole Resistance by Blocking the Efflux Pump Mdr1.
    Song M, Zhang M, Lu J, Xie F, Song J, Luan X, Hou X, Lou H, Chang W.
    Antimicrob Agents Chemother; 2022 Mar 15; 66(3):e0212621. PubMed ID: 35041505
    [Abstract] [Full Text] [Related]

  • 60. Upc2-mediated mechanisms of azole resistance in Candida auris.
    Li J, Aubry L, Brandalise D, Coste AT, Sanglard D, Lamoth F.
    Microbiol Spectr; 2024 Feb 06; 12(2):e0352623. PubMed ID: 38206035
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 63.